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Background
Cluster-level inference is generally found to be more sensi-
tive than voxel-level inference, as it makes use of local spa-
tial neighbourhood information to boost belief in extended
areas of signal [Friston]. Standard cluster inference only
makes use of the size of a cluster, whilst several alternatives
to cluster size inference have been proposed which incorpo-
rate height information, including joint cluster-height infer-
ence [Poline,Hayasaka], and cluster-mass inference [Bull-
more].

Existing cluster size methods, however, require an explicit
choice of cluster-forming threshold. As users know well,
minor adjustments in this threshold can result in dramatic
changes in the resulting inferences, and there is no objective
method by which a sensible threshold can be chosen.

In this work we propose a new approach to cluster inference
which retains the power of the cluster size statistic while
avoiding the specification of a cluster-forming threshold.
The result is a continuous image where the intensity at a
given voxel is a natural measure of local cluster support, or
put another way, measures the signficance of all possible
clusters that contain that voxel.

Method
The TFCE approach aims to enhance areas of signal that
exhibit some spatial contiguity without relying on hard-
threshold-based clustering.

For a particular cluster-forming thresholdh, consider creat-
ing an image of cluster extent,e(h). For a particular voxel,
e(h) is the extent of the cluster that contains that voxel (ifh
is greater than the voxels’s intensity thene(h) is zero). The
crux of the method is how to combine the set of these extent
images for allh’s.

Most generally, we consider summing powers of the ex-
tents, weighted by a power of the threshold:

TFCE =
∑

h

e(h)EhH. (1)

While this would seem to create two parameters (E & H) in
the place of one (h), in fact there are principled choices for
these parameters. For example, one approach is to choose
E & H to equate significance over differenth’s, by trans-
forming eache(h) into a P-value, and then combining P-
values overh’s. For example, using Gaussian random field
theory (RFT) for 3D images, one can show that, approxi-
mately,

Pe(h) ∝ exp( e(h)2/3 h2 ). (2)

Combining all of the P-values with Fisher’s P-value com-
bining method, which sums the− log P-values, immedi-
ately results in the TFCE statistic, withE = 2/3 andH = 2.

The general algorithm is re-summarised for the 1D data
case in the figure. Each voxel’s TFCE score is given by the
sum of the scores of all “supporting sections” underneath
it; as the heighth is incrementally raised from zero up to
the height (signal intensity) of a given pointp, the image is
thresholded ath, and the single contiguous cluster contain-
ing p is used to define the score for that heighth. This score
is simply the heighth (raised to some powerH) multiplied
by the cluster extente (raised to some powerE).

Note that this means that whilep can get support from the
lower parts of overlapping clusters (such as the left peak
in the figure), only those parts of the overlapping clusters
which lie below the point of inflection between the two
clusters are allowed to contribute. This therefore achieves a
balance between allowing overlapping clusters to contribute
to each other’s significance (desirable, particularly given
that there is no unambiguous way of deciding at this stage
whether they should be considered separately or jointly),
while still giving separate scores for the distinct local max-
ima. The TFCE output image can easily be turned into true
P -values (either uncorrected or fully corrected for multiple
comparisons across space) via permutation testing.

h

e

p

The TFCE value at point p is given by the sum,

over the shaded area, of the score from each

contributing incremental section:   

TFCE(p) = Σ  e(h)E . hH
h

The avoidance of hard cluster-forming thresholding means
that TFCE should be more stable than traditional cluster-
based thresholding, in terms of the potential for large
changes in the output being caused by small changes in the
input. The goal, however, was also to remove the depen-
dence on the arbitrary choice of the cluster-forming thresh-
old in the traditional approach, as there has never been a
principled way of setting the cluster-forming threshold. Be-
low we present evaluations on a wide range of settings for
E and H, and it is primarily our empirical observations
which have led us to select recommended values (as well
as more qualitative considerations, and the theoretical ones
presented above).

Note some conceptual similarities between such cluster
“enhancement” and various previous work such as scale-
space (Lindeberg, Worsley, Coulon) and wavelet pre/post-
processing (Van De Ville, Fadili, Penny). In further work
we will further investigate such similarities in theory and
practice, as well as the interaction (e.g.) with spatial pre-
smoothing.

Evaluations
We used ROC testing in two different ways to evaluate
TFCE and other thresholding methods. First, (“FWE”)
we controlled the family-wise-error to set the FPR in the
ROC testing, by evaluating in what fraction of pure noise
imagesany false positives were seen for a given thresh-
old; this is the most important measure as it corresponds
to the way in which people generally threshold in practice
(i.e., null-hypothesis testing, correcting for multiple com-
parisons over space, etc.). FWE ROC curves are quantified
in terms of AUC (area under curve), integrated over the FPR
range from 0:0.05. Second, (“simple”) we set the FPR ac-
cording to the proportion of false positive voxels found in
non-signal data.

Slices through the 7 test signals are shown below (two
nearly touching blobs, two distant blobs, several long thin
bars, hollow cube with a dot in the centre, Penny’s 3 blobs,
Penny’s cross [Flandin] and high-resolution real FMRI
data). To the signal we added Gaussian white noise to give
a range of peak SNR values: 1, 2, 5 and 10.

The first method that we tested was simple Gaus-
sian smoothing followed by voxelwise thresholding
(“VOXEL”). Gaussian kernels of FWHM of 0, 0.2, 1, 2,
4, 6 and 8 were applied. The second method that we tested
was cluster-based thresholding (“CLUSTER”), comprising
Gaussian-smoothing (same range as above), initial t-stat
thresholding at a range of levels (0.5, 0.75, 1, 1.5, 2, 2.5,
3, 3.5, 4 and 5) and then using the cluster extent as the test
statistic. The third method that we tested was TFCE. For
completeness, we preceded the TFCE algorithm with the
same range of data smoothing as described above, and for
each smoothing extent, we varied E and H over the range
0.01, 0.1, 0.5, 1, 2 and 3.

For the results shown below, we chose the settings for each
method that gave the best results over all tests

(all SNRs and all test images). For VOXEL, this
was sigma=3mm, for CLUSTER, this was was
sigma=1mm smoothing and cluster-forming thresh-
old=2, for TFCE we selected two sets of parameters to
present, “TFCE225”=presmoothing=1mm,E=0.5,H=1 and
“TFCE307”=presmoothing=2mm,E=1,H=3.

The range ofh thresholdings effectively used within TFCE
captures signals of differing spatial scales, somewhat remi-
niscent of wavelet methods. Hence for our final method we
tested wavelet enhancement/thresholding, as implemented
in WSPM [Van De Ville] to obtain de-noised statistic im-
ages, which we then thresholded voxelwise to feed into the
ROC evaluations. We used the default options with slight
modification (3D, redundant ’multiple’, 2-level ’iters’ de-
composition), as recommended in personal communication
with the toolbox authors.

The figure below shows the results for these settings of
the different algorithms. The plots show FWE-ROC nor-
malised AUC values for the 7 test signal shapes (left-
to-right) and 4 SNR levels (top-to-bottom). At the low-
est SNR, TFCE with more smoothing is overall the best
method. At the highest SNR, TFCE with less smoothing is
the best.
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The figure below shows “simple” ROC curves for (top-
bottom): test signal 2, SNR 1; test signal 5, SNR 1; test
signal 7, SNR 2. For each processing method, the mean
and IQR (over 100 signal+noise images) ROC plots are
shown. Right: expansion of the 0:0.05 FPR region of the
same plots.
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