Threshold-Free Cluster-Enhancement

ﬁm J\M“ Addressing the problem of threshold dependence in cluster inference
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(all SNRs and all test images). For VOXEL, this
was sigma=3mm, for CLUSTER, this was was
sigma=1lmm smoothing and cluster-forming thresh-
old=2, for TFCE we selected two sets of parameters to

areas of signal [Friston]. Standard cluster inference ofly present, "TFCE225"=presmoothing=1mm,E=0.5,H=1 and
makes use of the size of a cluster, whilst several alterest TFCE307"=presmoothing=2mm,E=1,H=3.

to cluster size inference have been proposed which inco po—hI The range of: thresholdings effectively used within TFCE
rate height information, including joint cluster-heighter- captures signals of differing spatial scales, somewhatrem
ence [Poline,Hayasaka], and cluster-mass inference-[Bull | : niscent of wavelet methods. Hence for our final method we

more]. The TFCE value at 0o f < given by th tested wavelet enhancement/thresholding, as implemented
- - - . 1he VgLl b [Pl [ Ik AT e e St in WSPM [Van De Ville] to obtain de-noised statistic im-
Existing cluster size methods, however, require an expl|ci n
over the shaded area, of the score frqm each ages, which we then thresholded voxelwise to feed into the
contributing incremental section: ROC evaluations. We used the default options with slight
TFCE(p) = Zh e(h)s . hH modification (3D, redundant 'multiple’, 2-level 'iters’ ee

changes in the resulting inferences, and there is no ogedti - _ ha
method by which a sensible threshold can be chosen. composition), as recommended In personal communication
with the toolbox authors.

In this work we propose a new approach to cluster inferengg avoidance of hard cluster-forming thresholding means _
which retains the power of the cluster size statistic whtlgat TFCE should be more stable than traditional clust fhe figure below shows the results for these settings of

avoiding the specification of a cluster-forming thresholdased thresholding, in terms of the potential for largeS diferent algorithms. The plots show FWE-ROC nor-
The result is a continuous image where the intensity agtfanges in the output being caused by small changes inl tesed AUC values for the 7 test signal shapes (left
given voxel is a natural measure of local cluster support@sut. The goal, however, was also to remove the depgﬁ_”ght) and 4 SNR levels (top-to-bottom). At the low-

put another way, measures the signficance of all posst@ice on the arbitrary choice of the cluster-forming thre§itt SNR. TFCE with more smoothing is overall the best

Background

Cluster-level inference Is generally found to be more serjsi
tive than voxel-level inference, as it makes use of local s
tial neighbourhood information to boost belief in extendgd

choice of cluster-forming threshold. As users know wdqll,
minor adjustments In this threshold can result in dramgtic

Clusters that contain that voxel. old in the traditional approach, as there has never bee gfhod. At the highest SNR, TFCE with less smoothing is
principled way of setting the cluster-forming thresholcda-Bt e best

Method low we present evaluations on a wide range of settings Tam B n T | | | .
The TFCE approach aims to enhance areas of signal #aind H, and it is primarily our empirical observation: o.sll I II I I H II [
exhibit some spatial contiguity without relying on hardvhich have led us to select recommended values (as \ o M L llH' an.im In I ,
threshold-based clustering. as more qualitative considerations, and the theoretieg$dcs™| -~ = S
For a particular cluster-forming threshadlgdconsider creat- presented above). %“T“ESE'?; 0l
ing an image of cluster extenrt(’). For a particular voxel, Note some conceptual similarities between such clus =2 | A
e(h) is the extent of the cluster that contains that voxek (if‘enhancement” and various previous work such as sc: L 2 3 4 5 6 7
is greater than the voxels’s intensity thei) is zero). The space (Lindeberg, Worsley, Coulon) and wavelet pre/pc N I’ Il I’ | i i
crux of the method is how to combine the set of these extpridcessing (Van De Ville, Fadili, Penny). In further wor ol -L_DI
images for allv’s. we will further investigate such similarities in theory an 1 2 ; : : 6 7
Most generally, we consider summing powers of the gxactice, as well as the interaction (e.g.) with spatiat p 1FmE B m o o m m P
tents, weighted by a power of the threshold: smoothing. ZZEJIH IIH 1

TFCE = e(h)"n". (1) Evaluations 1 2 ‘°’ : 5 ; 7

h

We used ROC testing in two different ways to evaluat&€ figure below shows “simple” ROC curves for (top-
While this would seem to create two parametéf®{ H)in TFCE and other thresholding methods. First, (“FWEBPttom): test signal 2, SNR 1; test signal 5, SNR 1; test
the place of onek), in fact there are principled choices fowe controlled the family-wise-error to set the FPR in ti¢ggnal 7, SNR 2. For each processing method, the mean
these parameters. For example, one approach is to ch&®3€ testing, by evaluating in what fraction of pure noig&d IQR (over 100 signal+noise images) ROC plots are
E & H to equate significance over differefis, by trans- imagesany false positives were seen for a given thresp2own. Right: expansion of the 0:0.05 FPR region of the
forming eache(h) into a P-value, and then combining Pold; this is the most important measure as it correspo$d&ne plots.

values overh’s. For example, using Gaussian random field the way in which people generally threshold in practico_:ﬁ— =
theory (RFT) for 3D images, one can show that, approkie., null-hypothesis testing, correcting for multiplens- .. o =
mately, parisons over space, etc.). FWE ROC curves are quantif’ /
P, o< exp( e(h)*® h*). (2) interms of AUC (area under curve), integrated over the FF. o -

Combining all of the P-values with Fisher’s P-value cor?N9e from 0:0.05. Se_cond, (‘simple .).We set the FPR ‘f_’l: —= : =
bining method, which sums the log P-values immedi_cordlng to the proportion of false positive voxels found i

ately results in the TFCE statistic, wiffi = 2/3 andH = 2. non-signal data.

The general algorithm is re-summarised for the 1D dataces through the 7 test signals are shown below (tv.
case In the figure. Each voxel's TFCE score is given by tlp]%arly touching bIOt_)S’ Le d_|stant blobs, several long th:
sum of the scores of all “supporting sections’ undernel@rs, hollow cube with a dot in the centre, Penny’s 3 blob,

it; as the height: is incrementally raised from zero up to ENNY's cross [Flandin] and high-rgsoluti(_)n regl FMRS
the height (signal intensity) of a given pointthe image is data). To the signal we added Gaussian white noise to g:

thresholded ak, and the single contiguous cluster contaifi-"2N9€ of peak SNR values: 1, 2, 5 and 10.
INg p IS used to define the score for that heighil his score
IS simply the height: (raised to some powedi ) multiplied
by the cluster extent (raised to some power).

Note that this means that whifecan get support from thethe first method that we tested was simple Gau.

lower parts of overlapping clusters (such as the left pagkn smoothing followed by voxelwise thresholding —=
In the figure), only those parts of the overlapping clustgfyoxg|”). Gaussian kernels of FWHM of 0, 0.2, 1, 2,.| =
which lie below the point of inflection between the tw@ g and 8 were applied. The second method that we tes|
clusters are allowed to contribute. This therefore aclsievy a5 cluster-based thresholding (‘CLUSTER”), comprising =~
balance between allowing overlapping clusters to contielbis 3y ssjan-smoothing (same range as above), initial -9t nowledaements
to each other’s significance (desirable, particularly Qivg,resholding at a range of levels (0.5, 0.75, 1, 1.5, 2, ), tgf ot UK EPSRE for funding 10 Matthenbd
ihat there is no unambiguous way of deciding at s SIZHE 5, 4 and 5) and then Using the CLer CXIENT a5 (e Febmert ca. 1 Kors it o o e oo
whether they should be considered separately or jointiyhyistic. The third method that we tested was TFCE. FoRI data and to Mark Woolrich and Adrian Groves for usefisicis-
while still giving separate scores for the distinct locabmacompleteness, we preceded the TFCE algorithm with 8f8s.

Ima. The TFCE output image can easily be turned into tiglene range of data smoothing as described above, an(hf
P-values (either uncorrected or fully corrected for muBipach smoothing extent, we varied E and H over the ra Er eNnces

i -
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