

D

Re

80%

15%

chord5%

D

Re

80%

15%

chord5%

line

flame

50%

25%

current25%

D

Re

80%

15%

chord5%

line

flame

50%

25%

current25%

Net99%

Monocles1%

D

Re

80%

15%

chord5%

line

flame

50%

25%

current25%

Net99%

Monocles1%

PNAS 2019

Kietzmann 2019

Kietzmann 2019

Kietzmann 2019

Kietzmann 2019

Outline

•Conceptual overview or RNNs

•FFN vs RNN

•Flavours of RNNs

•Training RNNs

•Real-world RNN

•Jupyter Notebook

•Build simple RNN (Keras)

•Analyse some properties

x

Multi-layer perceptron

Why they are powerful interpolators

ReLU

x

x

h

o

Why they are powerful interpolators

ReLU

x

x

h

o

Why they are powerful interpolators

ReLU

x

x

h

o

Building piecewise local linear models
(even more flexible when stacking multiple layers)

Layer 1

Layer 2

Layer 3

Layer 4

outputExample: fitting sine function

Don’t use this for
extrapolation!

x

h1 = W1*x

x

h2 = W2*h1

h3 = W3*h2

output = W4*h3

input = x

Feedforward Recurrent (example)
(downstream/upstream) (no hierarchy)

x

Recurrent (more common)
(only lateral recurrence)

h1 = W1*x + V1*h1

input = x

How do we know h1?

x(t-1)

Recurrent (temporal)

x(t)

h1(t) = W1*x(t) + V1*h1(t-1)

!! W1 and V1 don’t depend on time !!

x(1)

Memories
Output depends on all past input through multiple complex transformations

x(2) x(3) x(4)

Flavours of RNNs

• Cardinality of input-output

• How the hidden layers are passed forward

Vanilla RNN

h(t) = nonlin[W*x(t) + V*h(t-1)]

Vanilla RNN

h(t) = nonlin[W*x(t) + V*h(t-1)]

x(t)

h(t-1) h(t)

feed through

Vanilla RNN

h(t) = nonlin[W*x(t) + V*h(t-1)]

x(t)

h(t-1) h(t)

feed through

“Gated” RNN
(examples)

x(t)

h(t-1) delete some

bits

h(t)

GRU

Vanilla RNN

h(t) = nonlin[W*x(t) + V*h(t-1)]

x(t)

h(t-1) h(t)

feed through

“Gated” RNN
(examples)

x(t)

h(t-1) delete some

bits

h(t)

GRU

x(t)

h(t-1) delete some

bits

h(t)
LSTM

keep some

for later use

Vanilla RNN

h(t) = nonlin[W*x(t) + V*h(t-1)]

x(t)

h(t-1) h(t)

feed through

!!Learn which

bits to delete!!

“Gated” RNN
(examples)

x(t)

h(t-1) delete some

bits

h(t)

GRU

x(t)

h(t-1) delete some

bits

h(t)
LSTM

keep some

for later use

How can you delete (and
learn what to delete?)

1

output

How can you delete (and
learn what to delete?)

1

input = Weights * [x,h]

output

How can you delete (and
learn what to delete?)

1

input = Weights * [x,h]

output

(in practice, smooth

sigmoid used instead)

How can you delete (and
learn what to delete?)

1

input = Weights * [x,h]

output

(in practice, smooth

sigmoid used instead)

this learns which

(combinations of) x’s and h’s to delete

LSTM (approx)

x(t)

h(t-1)

Memory(t-1)

h(t)

Memory(t)

(output depends on input, state, and memory)
(memory explicitly changed by input and state)

feed through
delete some bits

Training FFN

x
input = x

O
ne

 fo
rw

ar
d

pa
ss

An
ot

he
r f

or
w

ar
d

pa
ss

input = Loss

fu
nc

tio
ns

Loss

gr
ad

ie
nt

s
w

rt
in

pu
ts

Training RNNs
• Back-propagation through time

One forward pass (functions)

Another forward pass (gradients wrt inputs)

A “real-life” RNN

A “real-life” RNN

How does it work?

How does it work?
Word -> vector of numbers (word “embedding”, word piece model)

How does it work?
Sentence -> trajectory

Word -> vector of numbers (word “embedding”, word piece model)

How does it work?
Sentence -> trajectory

Word -> vector of numbers (word “embedding”, word piece model)

Two separate networks (encoding/decoding)

How does it work?
Sentence -> trajectory

Word -> vector of numbers (word “embedding”, word piece model)

Two separate networks (encoding/decoding)

you

<start>

?
how

do

English

sentence

How does it work?
Sentence -> trajectory

Word -> vector of numbers (word “embedding”, word piece model)

Two separate networks (encoding/decoding)

you

<start>

?
how

do

English

sentence

<start>

?

como
estas

Spanish

sentence

https://arxiv.org/pdf/1609.08144.pdf

https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1609.08144.pdf

Time to do hands-on
playing with RNNs

