
ICA = PP

ICA = PP

M.C. JONES and ROBIN SIBSON. What is projection Pursuit? Journal of the Royal Statistical Society. 1987

Aapo Hyvärinen. Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE
TRANSACTIONS ON NEURAL NETWORKS, 1999

How to make sense of a table of data?

Jonathan Power “The Plot”

FMRI dataImages

What do I do with this data?
12

00
 ro

w
s

91282 columns

Take the mean?
12

00
 ro

w
s

91282 columns

Take the mean?
12

00
 ro

w
s

91282 columns

What have we done?

mean() =

/n

T

What have we done?

mean() =

/n

T

= wT X Orthogonal projection of X onto w

What have we done?

mean() =

/n

T

= wT X Orthogonal projection of X onto w

if X had 2 rows

and 6 columns:

w

w

There is nothing special about

w

There is nothing special about

w

• Solution: project onto all the direction and look at the
histogram for some interesting features

How do we find w?

• Defining "interestingness"

• PP

• ICA

Plan of talk:

Notation

• Data is a matrix X (dimensions: features x samples)

• Direction vector is w (features x 1)

• If we want more that one vector then it is W (features x p)

Interestingness

• Location of data should not matter --> centering

• Orientation of data should not matter --> Ok.

• Variance?

1D version of Xsome function TBD

Interestingness

• Location of data should not matter --> centering

• Orientation of data should not matter --> Ok.

• Variance?

1D version of Xsome function TBD

Interestingness

• Location of data should not matter --> centering

• Orientation of data should not matter --> Ok.

• Variance?

1D version of Xsome function TBD

Interestingness

• Location of data should not matter --> centering

• Orientation of data should not matter --> Ok.

• Variance?

1D version of Xsome function TBD

Variance(wTXc) = E[(wTXc)2]

1/n*(wTXc)(wTXc)T=

1/n*wT(XcXcT)w=

1st eigenvector of covariance matrix

max

PCA!

Maximising the variance

Variance(wTXc) = E[(wTXc)2]

1/n*(wTXc)(wTXc)T=

1/n*wT(XcXcT)w=

1st eigenvector of covariance matrix

max

PCA!

Maximising the variance

Variance(wTXc) = E[(wTXc)2]

1/n*(wTXc)(wTXc)T=

1/n*wT(XcXcT)w=

1st eigenvector of covariance matrix

max

PCA!

Maximising the variance

Variance(wTXc) = E[(wTXc)2]

1/n*(wTXc)(wTXc)T=

1/n*wT(XcXcT)w=

1st eigenvector of covariance matrix

max

PCA!

Maximising the variance

Variance(wTXc) = E[(wTXc)2]

1/n*(wTXc)(wTXc)T=

1/n*wT(XcXcT)w=

1st eigenvector of covariance matrix

max

PCA!

(theorem: a symmetric matrix M [like XXT] has all the eigenvectors
and one of them points in the direction of maximum xTMX)

Maximising the variance

PCA
• Capture largest variance

• Incidentally, approximate the data best

w

PCA
• Capture largest variance

• Incidentally, approximate the data best

w
wTX 1D version of X

PCA
• Capture largest variance

• Incidentally, approximate the data best

w
wTX 1D version of X

wwTX same dimensions as X

PCA
• Capture largest variance

• Incidentally, approximate the data best

w
wTX 1D version of X

wwTX same dimensions as X

|X-wwTX|2 minimize this wrt w?

PCA
• Capture largest variance

• Incidentally, approximate the data best

w
wTX 1D version of X

wwTX same dimensions as X

|X-wwTX|2 minimize this wrt w?

trace((X-wwTX)(X-wwTX)T)

PCA
• Capture largest variance

• Incidentally, approximate the data best

w
wTX 1D version of X

wwTX same dimensions as X

|X-wwTX|2 minimize this wrt w?

trace((X-wwTX)(X-wwTX)T)
+wwTXXTwwT-wwTXXT -XXTwwTtrace()

PCA
• Capture largest variance

• Incidentally, approximate the data best

w
wTX 1D version of X

wwTX same dimensions as X

|X-wwTX|2 minimize this wrt w?

trace((X-wwTX)(X-wwTX)T)
+wwTXXTwwT-wwTXXT -XXTwwTtrace()

-wTXXTwtrace()

PCA interpretations
• Capture largest variance

• Best approximation to data

• Direction that is most aligned with data

w

PCA interpretations
• Capture largest variance

• Best approximation to data

• Direction that is most aligned with data

w

wTXXTw = sum_squares(XTw)

The problem with PCA
The direction of maximum variance is not always interesting

Interestingness

• Location of data should not matter --> centering

• Orientation of data should not matter --> Ok.

• Variance?

Sphering
n.k.a. whitening

• How to make it so Variance(wTXc) = 1 for all w ?

Sphering
n.k.a. whitening

• How to make it so Variance(wTXc) = 1 for all w ?

Xc --> Xs = QXc

Sphering
n.k.a. whitening

• How to make it so Variance(wTXc) = 1 for all w ?

n* Variance(wTQXc) = wT(QXc(QXc)T)w = wTQXcXcTQTw

Xc --> Xs = QXc

Sphering
n.k.a. whitening

• How to make it so Variance(wTXc) = 1 for all w ?

n* Variance(wTQXc) = wT(QXc(QXc)T)w = wTQXcXcTQTw

XcXcT = UDUT eigenvalue decomposition

Xc --> Xs = QXc

Sphering
n.k.a. whitening

• How to make it so Variance(wTXc) = 1 for all w ?

n* Variance(wTQXc) = wT(QXc(QXc)T)w = wTQXcXcTQTw

XcXcT = UDUT eigenvalue decomposition

wT(QXcXcTQT)w = wTQUDUTQTw

Xc --> Xs = QXc

Sphering
n.k.a. whitening

• How to make it so Variance(wTXc) = 1 for all w ?

n* Variance(wTQXc) = wT(QXc(QXc)T)w = wTQXcXcTQTw

XcXcT = UDUT eigenvalue decomposition

wT(QXcXcTQT)w = wTQUDUTQTw

Xc --> Xs = QXc

QUDUTQT = Identity

Sphering
n.k.a. whitening

• How to make it so Variance(wTXc) = 1 for all w ?

n* Variance(wTQXc) = wT(QXc(QXc)T)w = wTQXcXcTQTw

XcXcT = UDUT eigenvalue decomposition

wT(QXcXcTQT)w = wTQUDUTQTw

Xc --> Xs = QXc

QUDUTQT = Identity

Q= UD-1/2UT

Sphering
n.k.a. whitening

• How to make it so Variance(wTXc) = 1 for all w ?

n* Variance(wTQXc) = wT(QXc(QXc)T)w = wTQXcXcTQTw

XcXcT = UDUT eigenvalue decomposition

wT(QXcXcTQT)w = wTQUDUTQTw

Xc --> Xs = QXc

QUDUTQT = Identity

Q= UD-1/2UT project onto eigenvectors

rescale (undo what X does)

project back

Centering
function X_c = center(X)

n = size(X,2);
C = eye(n) - ones(n,1)*ones(1,n)/n;
X_c = X*C;

function X_c = center(X)
X_c = X - mean(X,2);

Sphering whitening

function X_s = whiten(X)

[V,D] = eig(cov(X'));
Q = V*diag(1./sqrt(diag(D)))*V';
X_s = Q*center(X);

centered whitened

variance long different orientations

function plot_var(X)

angles = linspace(0,2*pi,1000); % angles to calculate variance along

V = zeros(size(angles)); % Variance

for i=1:length(angles)

 % get vector w along angle

 [w_x,w_y] = pol2cart(angles(i),1);

 w = [w_x;w_y];

 % calculate cf along w

 V(i) = var(w'*X);

end

figure,hold on

plot(X(1,:),X(2,:),'bo')

[xx,yy] = pol2cart(angles,V);

plot(xx,yy,'linewidth',2,'color','k','linestyle','--')

axis equal

grid on

Interestingness

What is uninteresting?

Gaussian I am afraid

(everything is Gaussian by default)

Gaussians are boring

Gaussians are boring

• If you randomly project X, chances are you get a
Gaussian (central limit theorem)

Gaussians are boring

• If you randomly project X, chances are you get a
Gaussian (central limit theorem)

• Gaussian is the maximum entropy distribution (if you fix
the mean and variance)

Gaussians are boring

• If you randomly project X, chances are you get a
Gaussian (central limit theorem)

• Gaussian is the maximum entropy distribution (if you fix
the mean and variance)

• So..... minimize entropy! (maximize neg-entropy). I.e.
maximize non-gaussianity.

Maths of relative entropy
and gaussians

Maths of relative entropy
and gaussians

Relative entropy = -∫p.log(q/p) Distance between p and q (>=0)

Maths of relative entropy
and gaussians

Relative entropy = -∫p.log(q/p) Distance between p and q (>=0)

Entropy = -∫p.log(1/p) A bit like distance between p and 1 (no
structure)

Maths of relative entropy
and gaussians

Relative entropy = -∫p.log(q/p) Distance between p and q (>=0)

Entropy = -∫p.log(1/p) A bit like distance between p and 1 (no
structure)

-∫p.log(q/p) = -∫p.log(q) -∫p.log(1/p)

Maths of relative entropy
and gaussians

Relative entropy = -∫p.log(q/p) Distance between p and q (>=0)

Entropy = -∫p.log(1/p) A bit like distance between p and 1 (no
structure)

-∫p.log(q/p) = -∫p.log(q) -∫p.log(1/p)

 = -∫q.log(q) - Entropy(p)

Maths of relative entropy
and gaussians

Relative entropy = -∫p.log(q/p) Distance between p and q (>=0)

Entropy = -∫p.log(1/p) A bit like distance between p and 1 (no
structure)

-∫p.log(q/p) = -∫p.log(q) -∫p.log(1/p)

q Gaussian -> log(q) is quadratic = -∫q.log(q) - Entropy(p)

Maths of relative entropy
and gaussians

Relative entropy = -∫p.log(q/p) Distance between p and q (>=0)

Entropy = -∫p.log(1/p) A bit like distance between p and 1 (no
structure)

-∫p.log(q/p) = -∫p.log(q) -∫p.log(1/p)

q Gaussian -> log(q) is quadratic = -∫q.log(q) - Entropy(p)
-> Ep[log(q)] = Eq[log(q)] = combination of
1st and 2nd moments!

Maths of relative entropy
and gaussians

Relative entropy = -∫p.log(q/p) Distance between p and q (>=0)

Entropy = -∫p.log(1/p) A bit like distance between p and 1 (no
structure)

-∫p.log(q/p) = -∫p.log(q) -∫p.log(1/p)

q Gaussian -> log(q) is quadratic = -∫q.log(q) - Entropy(p)
-> Ep[log(q)] = Eq[log(q)] = combination of
1st and 2nd moments! = Entropy(q) - Entropy(p)

Maths of relative entropy
and gaussians

Relative entropy = -∫p.log(q/p) Distance between p and q (>=0)

Entropy = -∫p.log(1/p) A bit like distance between p and 1 (no
structure)

-∫p.log(q/p) = -∫p.log(q) -∫p.log(1/p)

q Gaussian -> log(q) is quadratic = -∫q.log(q) - Entropy(p)
-> Ep[log(q)] = Eq[log(q)] = combination of
1st and 2nd moments! = Entropy(q) - Entropy(p)

>=0

Maths of relative entropy
and gaussians

Relative entropy = -∫p.log(q/p) Distance between p and q (>=0)

Entropy = -∫p.log(1/p) A bit like distance between p and 1 (no
structure)

-∫p.log(q/p) = -∫p.log(q) -∫p.log(1/p)

q Gaussian -> log(q) is quadratic = -∫q.log(q) - Entropy(p)
-> Ep[log(q)] = Eq[log(q)] = combination of
1st and 2nd moments! = Entropy(q) - Entropy(p)

>=0

Gaussian = maximum entropy when mean and variance fixed

Ok, but how do you actually
calculate entropy?

Ok, but how do you actually
calculate entropy?

• hmm... we are given samples, not the actual data
distribution

Ok, but how do you actually
calculate entropy?

• hmm... we are given samples, not the actual data
distribution

• kernel density not an option (we need to find w with
optimization)

Ok, but how do you actually
calculate entropy?

• hmm... we are given samples, not the actual data
distribution

• kernel density not an option (we need to find w with
optimization)

• approximation

variance

other (as long as g is
not quadratic)

Advantages of approximation:

continuous function (good for optimization)

easy to calculate (unlike entropy)

(gauss) (tanh)

(skew,pow3) (kurt,pow4)

Let's try this

n = 400; % number of samples
d = 2; % dimensionality

w1 = randn(d,1);
w1 = w1/norm(w1); % direction 1 is random
ang = 30; % rotation angle
rot = [cosd(ang) sind(ang); %rotation matrix
 -sind(ang) cosd(ang)];
w2 = rot*w1; % direction 2 is rotated re direction 1

% Generate data along the two directions
% (multivariate Gaussians spread a little along w1 and w2
x1 = mvnrnd([4;1],w1*w1',n/2) + .1*randn(n/2,2);
x2 = mvnrnd([4;1],w2*w2',n/2) + .1*randn(n/2,2);

% Concatenate the two clouds of data
x = [x1;x2]';

figure
plot(x(1,:),x(2,:),'o')
grid on
axis equal

E.g. rFMRI spatial ICA:

each point = voxel

each axis = time point

Random projection w'X

Gauss logcosh (tanh)

pow3 (skewness) pow4 (kurtosis)

Beyond 2D

• We can't just look at the 2D projections

• We need an algorithm fo finding w

• We have a cost function!

• FastICA = Newton-like algorithm

s.t.

ICA
X = AS

mixing
matrix

mixed
signalsdata

ICA
X = AS

X = A S

mixing
matrix

mixed
signalsdata

ICA
X = AS

X = A S

X =W S
W = A-1

mixing
matrix

mixed
signalsdata

ICA
X = AS

X = A S

X =W S
W = A-1

X =w s

mixing
matrix

mixed
signalsdata

ICA
X = AS

X = A S

X =W S
W = A-1

X =w s

PP

mixing
matrix

mixed
signalsdata

Temporal PP
S (2xn) AS

(As)1

(A
s)

2

ICA (PP) PCA
sphered not sphered

Successful unmixing

Still some mixing

Spatial PP

Spatial PP
X = A S

Spatial PP
X = A S

Spatial PP
X = A S

=

Interpretation: similarity
between voxel time course and

IC time course

On orthogonality

On orthogonality
• When we talk about IC's what are we talking about?

On orthogonality
• When we talk about IC's what are we talking about?

• Remember: X=AS

On orthogonality
• When we talk about IC's what are we talking about?

• Remember: X=AS

• but X is sphered: QX=AS

On orthogonality
• When we talk about IC's what are we talking about?

• Remember: X=AS

• but X is sphered: QX=AS

• A = mixing matrix = W-1

On orthogonality
• When we talk about IC's what are we talking about?

• Remember: X=AS

• but X is sphered: QX=AS

• A = mixing matrix = W-1

• --> X=Q-1AS

On orthogonality
• When we talk about IC's what are we talking about?

• Remember: X=AS

• but X is sphered: QX=AS

• A = mixing matrix = W-1

• --> X=Q-1AS

• rows of S (independent components) are actually orthogonal!

On orthogonality
• When we talk about IC's what are we talking about?

• Remember: X=AS

• but X is sphered: QX=AS

• A = mixing matrix = W-1

• --> X=Q-1AS

• rows of S (independent components) are actually orthogonal!

• This is because: SST=(WQX)TWQX=WQXXTQTWT=WWT=Identity

Difference between ICA and
projection pursuit

Difference between ICA and
projection pursuit

• ICA (like PCA) has an explicit model: X = A*S whereas PP
only has data and tries to find w s.t. w'X has a funky
distribution

Difference between ICA and
projection pursuit

• ICA (like PCA) has an explicit model: X = A*S whereas PP
only has data and tries to find w s.t. w'X has a funky
distribution

• Because ICA has a model of the data, it can be
augmented with e.g. noise model (like Melodic), explicit
model for S (e.g. mixture of gaussians like FLICA or other
mixtures like PROFUMO), etc.

Difference between ICA and
projection pursuit

• ICA (like PCA) has an explicit model: X = A*S whereas PP
only has data and tries to find w s.t. w'X has a funky
distribution

• Because ICA has a model of the data, it can be
augmented with e.g. noise model (like Melodic), explicit
model for S (e.g. mixture of gaussians like FLICA or other
mixtures like PROFUMO), etc.

• But FastICA is PP with nice approximations to neg-
entropy and an efficient algorithm for finding w

The end.

