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How to make sense of a table of data?
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How do we find w?

e Solution: project onto all the direction and look at the
histogram for some interesting features



Plan of talk:

e Defining "interestingness”
e PP

e |CA



Notation

e Datais a matrix X (dimensions: features x samples)
* Direction vector is w (features x 1)

e |f we want more that one vector then it is W (features x p)
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Interestingness

P (w" X)

some function TBD 1D version of X

.‘.

» Location of data should not matter --> centering >

X.= X(I - 117 /n)

* Orientation of data should not matter --> Ok.
(Rw)TRX

« Variance?

O‘O
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Maximising the variance

max Variance( wTXc) E[ (WTXc)?]
1/ n*(WTXc)(WTXC)T

1/N*WT(XcXcT)W

l

1st eigenvector of covariance matrix

PCA!

(theorem: a symmetric matrix M [like XXT] has all the eigenvectors
and one of them points in the direction of maximum xTMX)



PCA

e (Capture largest variance

* |ncidentally, approximate the data best




PCA

e (Capture largest variance

* |ncidentally, approximate the data best

wTX 1D version of X




PCA

e (Capture largest variance

* |ncidentally, approximate the data best

wTX 1D version of X

wwTX same dimensions as X




PCA

e (Capture largest variance

* |ncidentally, approximate the data best

wTX 1D version of X

W
wwTX same dimensions as X &

|IX-wwTX|[2  minimize this wrt w?




PCA

e (Capture largest variance

* |ncidentally, approximate the data best

wTX 1D version of X

wwTX same dimensions as X

|IX-wwTX|[2  minimize this wrt w?

trace( (X-wwTX )(X-wwTX )T)




PCA

e (Capture largest variance

* |ncidentally, approximate the data best

wTX 1D version of X

W
wwTX same dimensions as X &

|IX-wwTX|[2  minimize this wrt w?

trace( (X-wwTX )(X-wwTX )T)

trace( -wwTXXT  -XXTwwT  +wwTXXTwwT )



PCA

e (Capture largest variance

* |ncidentally, approximate the data best

wTX 1D version of X

W
wwTX same dimensions as X &

|IX-wwTX|[2  minimize this wrt w?

trace( (X-wwTX )(X-wwTX )T)

trace( -wwTXXT  -XXTwwT  +wwTXXTwwT )
trace( -wTXXTw )
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PCA interpretations

e Capture largest variance
 Best approximation to data

e Direction that is most aligned with data

WTXXTw = sum_squares( XTw)




The problem with PCA

The direction of maximum variance is not always interesting
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Sphering

n.k.a. whitening

+ How to make it so Variance( wTX;) = 1 for all w ?

Xc - Xs — QXc
n* Variance( wTQXc) = wT(QX:(QXc)T)w = wTQXX:TQTw

XX:T=UDUT eigenvalue decomposition

wT(QXX:TQT)w = wTQUDUTQTwW
QUDUTQT = Identity

Q= Up-12yrT



Sphering

n.k.a. whitening

+ How to make it so Variance( wTX;) = 1 for all w ?

Xc --> Xs = QXc
n* Variance( wTQXc) = wT(QX:(QXc)T)w = wTQXX:TQTw
XX:T=UDUT eigenvalue decomposition
wT(QX:XTQT)w = wTQUDUTQTW
QUDUTQT = Identity

= UD-12yT project onto eigenvectors
Q rescale (undo what X does)

project back



Centering

Centering

T before
ater

function X_c = center(X)
X _c=X-mean(X,2);




Sphering whitening

function X_s = whiten(X)

[V,D] = eig(cov(X"));
‘ Q = V*diag(1./sqrt(diag(D)))*V";
X_s = Q*center(X);




centered whitened

variance long different orientations

function plot_var(X)

angles = linspace(0,2*pi,1000); % angles to calculate variance along
V = zeros(size(angles)); % Variance
for i=1:length(angles)
% get vector w along angle
[w_x,w_y] = pol2cart(angles(i),1);
w = [w_x;w_yl;
% calculate cf along w
V(i) = var(w'*X);
end

figure,hold on
plot(X(1,:),X(2,:),'bo")

[xx,yy] = pol2cart(angles,V);
plot(xx,yy,'linewidth',2,'color','k’,'linestyle','--")
axis equal

grid on



Interestingness

I(w' X)

What is uninteresting?

Gaussian | am afraid

(everything is Gaussian by default)
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Gaussians are boring

If you randomly project X, chances are you get a
Gaussian (central limit theorem)

Gaussian is the maximum entropy distribution (if you fix
the mean and variance)

So..... minimize entropy! (maximize neg-entropy). l.e.
maximize non-gaussianity.
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Maths of relative entropy
and gaussians

Relative entropy = -[p.log(a/p) Distance between p and q (>=0)
Entropy = -[p.log(1/p) A bit like distance between p and 1 (no
structure)

-[p.log(a/p) = -[p.log(q) -[p.log(1/p)

= -[qg.log(q) - Entropy(p) g Gaussian -> log(q) is quadratic
-> Ep[log(q)] = Eqg[log(q)] = combination of
= Entropy(q) - Entropy(p) 1st and 2nd moments!
>=0

Gaussian = maximum entropy when mean and variance fixed
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Ok, but how do you actually
calculate entropy?

* hmm... we are given samples, not the actual data
distribution

e kernel density not an option (we need to find w with
optimization)

e approximation



[(w'X) = E[(w'X)?

[(w'X) =E|g(w'X)]

Advantages of approximation:
continuous function (good for optimization)
easy to calculate (unlike entropy)

variance

other (aslong as g is
not quadratic)
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Let's try this



E.g. rfFMRI spatial ICA:
each point = voxel
each axis = time point

2.5

1.5

0.5

-0.5

oo

n = 400; number of samples
d = 2; % dimensionality

wl = randn(d,1l);

wl = wl/norm(wl); % direction 1 is random
ang = 30; % rotation angle
rot = [cosd(ang) sind(ang); $rotation matrix
-sind(ang) cosd(ang)];
w2 = rot*wl; % direction 2 is rotated re direction 1

oo

Generate data along the two directions

% (multivariate Gaussians spread a little along wl and w2
x1 = mvnrnd([4;1],wl*wl',n/2) + .l*randn(n/2,2);

x2 = mvnrnd([4;1],w2*w2',n/2) + .l*randn(n/2,2);

% Concatenate the two clouds of data

X = [x1;x2]";

figure
plot(x(1l,:),x(2,:), '0")
grid on

axis equal

6.5




Random projection w'X
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Beyond 2D

We can't just look at the 2D projections

We need an algorithm fo finding w

We have a cost function! E ( TX)] stwliw =1

FastlCA = Newton-like algorithm
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Temporal PP
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PCA
not sphered

ICA (PP)
sphered
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Spatial PP

space - compor egts space

spatial maps
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Interpretation: similarity
between voxel time course and
|C time course
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On orthogonality

When we talk about IC's what are we talking about?
Remember: X=AS

but X is sphered: QX=AS

A = mixing matrix = W-1

--> X=Q1AS

rows of S (independent components) are actually orthogonal!

This is because: SST=(WQX)TWQX=WQXXTQTWT=WWT=I|dentity
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Difference between ICA and
projection pursuit

* |CA (like PCA) has an explicit model: X = A*S whereas PP
only has data and tries to find w s.t. w'X has a funky
distribution

e Because ICA has a model of the data, it can be
augmented with e.g. noise model (like Melodic), explicit
model for S (e.g. mixture of gaussians like FLICA or other
mixtures like PROFUMO), etc.

e But FastICA is PP with nice approximations to neg-
entropy and an efficient algorithm for finding w



The end.



