ICA = PP

ICA = PP

M.C. JONES and ROBIN SIBSON. What is projection Pursuit? Journal of the Royal Statistical Society. 1987

Aapo Hyvarinen. Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE
TRANSACTIONS ON NEURAL NETWORKS, 1999

How to make sense of a table of data?

Images FMRI data

> FO
EOE:,_-—WJ \/\,-WL/\-\._—\J'\\J\)\\,\,,_J\M’WJ.
- 8 T S -

Jonathan Power “The Plot”

1200 rows

What do | do with this data?

T | *
I 1 ¢
| | :
? \ i
| |

| | '
i : ;
? ‘ {
; J .
| | '
| | B
) |

91282 columns

1200 rows

Take the mean?

el
A |

91282 columns

1200 rows

Take the mean?

What have we done?

#Y w
- || MR T

\i) /n

What have we done?

m '
1

1 |

\i} /n

= wlX Orthogonal projection of X onto w

What have we done?

= wlX Orthogonal projection of X onto w

if X had 2 .\.\
;nd 6aco|ul;?1¥1v:: .\ \0

There is nothing special about

There is nothing special about

How do we find w?

e Solution: project onto all the direction and look at the
histogram for some interesting features

Plan of talk:

e Defining "interestingness”
e PP

e |CA

Notation

e Datais a matrix X (dimensions: features x samples)
* Direction vector is w (features x 1)

e |f we want more that one vector then it is W (features x p)

Interestingness

I(w!X
some function 7B (\)

1D version of X

Interestingness

P (w" X)

some function TBD 1D version of X

.‘.

» Location of data should not matter --> centering >
X.= X(I - 117 /n)

Interestingness

P (w" X)

some function TBD 1D version of X

.‘.

» Location of data should not matter --> centering >

X.= X(I - 117 /n)

* Orientation of data should not matter --> Ok.
(Rw)TRX

Interestingness

P (w" X)

some function TBD 1D version of X

.‘.

» Location of data should not matter --> centering >

X.= X(I - 117 /n)

* Orientation of data should not matter --> Ok.
(Rw)TRX

« Variance?

O‘O

Maximising the variance

max Variance(wTXc) = E[(WTXc)?]

Maximising the variance

max Variance(wTXc) E[(WTXc)?]

1/ n*(WTXc)(WTXC)T

Maximising the variance

max Variance(wTXc) E[(WTXc)?]
1/ n*(WTXc)(WTXC)T

1/N*WT(XcXcT)W

Maximising the variance

max Variance(wTXc) E[(WTXc)?]
1/ n*(WTXc)(WTXC)T

1/N*WT(XcXcT)W

l

1st eigenvector of covariance matrix

PCA!

Maximising the variance

max Variance(wTXc) E[(WTXc)?]
1/ n*(WTXc)(WTXC)T

1/N*WT(XcXcT)W

l

1st eigenvector of covariance matrix

PCA!

(theorem: a symmetric matrix M [like XXT] has all the eigenvectors
and one of them points in the direction of maximum xTMX)

PCA

e (Capture largest variance

* |ncidentally, approximate the data best

PCA

e (Capture largest variance

* |ncidentally, approximate the data best

wTX 1D version of X

PCA

e (Capture largest variance

* |ncidentally, approximate the data best

wTX 1D version of X

wwTX same dimensions as X

PCA

e (Capture largest variance

* |ncidentally, approximate the data best

wTX 1D version of X

W
wwTX same dimensions as X &

|IX-wwTX|[2 minimize this wrt w?

PCA

e (Capture largest variance

* |ncidentally, approximate the data best

wTX 1D version of X

wwTX same dimensions as X

|IX-wwTX|[2 minimize this wrt w?

trace((X-wwTX)(X-wwTX)T)

PCA

e (Capture largest variance

* |ncidentally, approximate the data best

wTX 1D version of X

W
wwTX same dimensions as X &

|IX-wwTX|[2 minimize this wrt w?

trace((X-wwTX)(X-wwTX)T)

trace(-wwTXXT -XXTwwT +wwTXXTwwT)

PCA

e (Capture largest variance

* |ncidentally, approximate the data best

wTX 1D version of X

W
wwTX same dimensions as X &

|IX-wwTX|[2 minimize this wrt w?

trace((X-wwTX)(X-wwTX)T)

trace(-wwTXXT -XXTwwT +wwTXXTwwT)
trace(-wTXXTw)

PCA interpretations

e Capture largest variance
 Best approximation to data

e Direction that is most aligned with data

PCA interpretations

e Capture largest variance
 Best approximation to data

e Direction that is most aligned with data

WTXXTw = sum_squares(XTw)

The problem with PCA

The direction of maximum variance is not always interesting

2.5

1.5

0.5

05 |

Interestingness

I(w' X)

A A
o
[
o
» Location of data should not matter --> centering °
. . T
X.=X(I-11"/n) N N
o
. : ® 0‘0
* Orientation of data should not matter --> Ok. 3 de
(Rw)"RX —

Sphering

n.k.a. whitening

+ How to make it so Variance(wTX;) = 1 for all w ?

Sphering

n.k.a. whitening

+ How to make it so Variance(wTX;) = 1 for all w ?

Xc -=-> Xs = QXc

Sphering

n.k.a. whitening

+ How to make it so Variance(wTX;) = 1 for all w ?

Xc - Xs — QXc
n* Variance(wTQXc) = wT(QX:(QXc)T)w = wTQXX:TQTw

Sphering

n.k.a. whitening

+ How to make it so Variance(wTX;) = 1 for all w ?

Xc - Xs — QXc
n* Variance(wTQXc) = wT(QX:(QXc)T)w = wTQXX:TQTw

XX:T=UDUT eigenvalue decomposition

Sphering

n.k.a. whitening

+ How to make it so Variance(wTX;) = 1 for all w ?
Xc --> Xs = QXc
n* Variance(wTQXc) = wT(QX:(QXc)T)w = wTQXX:TQTw
XX T=UDUT eigenvalue decomposition

wT(QXX:TQT)w = wTQUDUTQTwW

Sphering

n.k.a. whitening

+ How to make it so Variance(wTX;) = 1 for all w ?

Xc - Xs — QXc
n* Variance(wTQXc) = wT(QX:(QXc)T)w = wTQXX:TQTw

XX:T=UDUT eigenvalue decomposition

wT(QXX:TQT)w = wTQUDUTQTwW
QUDUTQT = Identity

Sphering

n.k.a. whitening

+ How to make it so Variance(wTX;) = 1 for all w ?

Xc - Xs — QXc
n* Variance(wTQXc) = wT(QX:(QXc)T)w = wTQXX:TQTw

XX:T=UDUT eigenvalue decomposition

wT(QXX:TQT)w = wTQUDUTQTwW
QUDUTQT = Identity

Q= Up-12yrT

Sphering

n.k.a. whitening

+ How to make it so Variance(wTX;) = 1 for all w ?

Xc --> Xs = QXc
n* Variance(wTQXc) = wT(QX:(QXc)T)w = wTQXX:TQTw
XX:T=UDUT eigenvalue decomposition
wT(QX:XTQT)w = wTQUDUTQTW
QUDUTQT = Identity

= UD-12yT project onto eigenvectors
Q rescale (undo what X does)

project back

Centering

Centering

T before
ater

function X_c = center(X)
X _c=X-mean(X,2);

Sphering whitening

function X_s = whiten(X)

[V,D] = eig(cov(X"));
‘ Q = V*diag(1./sqrt(diag(D)))*V";
X_s = Q*center(X);

centered whitened

variance long different orientations

function plot_var(X)

angles = linspace(0,2*pi,1000); % angles to calculate variance along
V = zeros(size(angles)); % Variance
for i=1:length(angles)
% get vector w along angle
[w_x,w_y] = pol2cart(angles(i),1);
w = [w_x;w_yl;
% calculate cf along w
V(i) = var(w'*X);
end

figure,hold on
plot(X(1,:),X(2,:),'bo")

[xx,yy] = pol2cart(angles,V);
plot(xx,yy,'linewidth',2,'color','k’,'linestyle','--")
axis equal

grid on

Interestingness

I(w' X)

What is uninteresting?

Gaussian | am afraid

(everything is Gaussian by default)

Gaussians are boring

Gaussians are boring

e |f you randomly project X, chances are you get a
Gaussian (central limit theorem)

Gaussians are boring

e |f you randomly project X, chances are you get a
Gaussian (central limit theorem)

e (Gaussian is the maximum entropy distribution (if you fix
the mean and variance)

Gaussians are boring

If you randomly project X, chances are you get a
Gaussian (central limit theorem)

Gaussian is the maximum entropy distribution (if you fix
the mean and variance)

So..... minimize entropy! (maximize neg-entropy). l.e.
maximize non-gaussianity.

Maths of relative entropy
and gaussians

Maths of relative entropy
and gaussians

Relative entropy = -[p.log(a/p) Distance between p and q (>=0)

Maths of relative entropy
and gaussians

Relative entropy = -[p.log(a/p) Distance between p and q (>=0)

A bit like distance between p and 1 (no

Entropy = -[p.log(1/p) structure)

Maths of relative entropy
and gaussians

Relative entropy = -[p.log(a/p) Distance between p and q (>=0)

A bit like distance between p and 1 (no

Entropy = -[p.log(1/p) structure)

-[p.log(a/p) = -[p.log(q) -[p.log(1/p)

Maths of relative entropy
and gaussians

Relative entropy = -[p.log(a/p) Distance between p and q (>=0)

A bit like distance between p and 1 (no

Entropy = -[p.log(1/p) structure)

-[p.log(a/p) = -[p.log(q) -[p.log(1/p)

= -[q.log(q) - Entropy(p)

Maths of relative entropy
and gaussians

Relative entropy = -[p.log(a/p) Distance between p and q (>=0)
Entropy = -[p.log(1/p) A bit like distance between p and 1 (no
structure)

-[p.log(a/p) = -[p.log(q) -[p.log(1/p)

= -[qg.log(q) - Entropy(p) g Gaussian -> log(q) is quadratic

Maths of relative entropy
and gaussians

Relative entropy = -[p.log(a/p) Distance between p and q (>=0)
Entropy = -[p.log(1/p) A bit like distance between p and 1 (no
structure)
-Jp.log(a/p) = -[p.log(q) -Jp.log(1/p)
= -[qg.log(q) - Entropy(p) g Gaussian -> log(q) is quadratic

-> Ep[log(q)] = Eq[log(g)] = combination of
1st and 2nd moments!

Maths of relative entropy

and gaussians

Relative entropy = -[p.log(a/p)

Entropy = -[p.log(1/p)

-[p.log(a/p) = -[p.log(q) -[p.log(1/p)

= -[q.log(q) - Entropy(p)

= Entropy(q) - Entropy(p)

Distance between p and g (>=0)

A bit like distance between p and 1 (no
structure)

q Gaussian -> log(q) is quadratic

-> Ep[log(q)] = Eq[log(g)] = combination of
1st and 2nd moments!

Maths of relative entropy

and gaussians

Relative entropy = -[p.log(a/p)

Entropy = -[p.log(1/p)

-[p.log(a/p) = -[p.log(q) -[p.log(1/p)

= -[q.log(q) - Entropy(p)

= Entropy(q) - Entropy(p)
>=0

Distance between p and g (>=0)

A bit like distance between p and 1 (no
structure)

q Gaussian -> log(q) is quadratic

-> Ep[log(q)] = Eq[log(g)] = combination of
1st and 2nd moments!

Maths of relative entropy
and gaussians

Relative entropy = -[p.log(a/p) Distance between p and q (>=0)
Entropy = -[p.log(1/p) A bit like distance between p and 1 (no
structure)

-[p.log(a/p) = -[p.log(q) -[p.log(1/p)

= -[qg.log(q) - Entropy(p) g Gaussian -> log(q) is quadratic
-> Ep[log(q)] = Eqg[log(q)] = combination of
= Entropy(q) - Entropy(p) 1st and 2nd moments!
>=0

Gaussian = maximum entropy when mean and variance fixed

Ok, but how do you actually
calculate entropy?

Ok, but how do you actually
calculate entropy?

* hmm... we are given samples, not the actual data
distribution

Ok, but how do you actually
calculate entropy?

* hmm... we are given samples, not the actual data
distribution

e kernel density not an option (we need to find w with
optimization)

Ok, but how do you actually
calculate entropy?

* hmm... we are given samples, not the actual data
distribution

e kernel density not an option (we need to find w with
optimization)

e approximation

[(w'X) = E[(w'X)?

[(w'X) =E|g(w'X)]

Advantages of approximation:
continuous function (good for optimization)
easy to calculate (unlike entropy)

variance

other (aslong as g is
not quadratic)

20 ¢

101

1-exp(-x’)

(gauss)

(skew,pow3)

25¢

15}

log(cosh(x)

(tanh)

Let's try this

E.g. rfFMRI spatial ICA:
each point = voxel
each axis = time point

2.5

1.5

0.5

-0.5

oo

n = 400; number of samples
d = 2; % dimensionality

wl = randn(d,1l);

wl = wl/norm(wl); % direction 1 is random
ang = 30; % rotation angle
rot = [cosd(ang) sind(ang); $rotation matrix
-sind(ang) cosd(ang)];
w2 = rot*wl; % direction 2 is rotated re direction 1

oo

Generate data along the two directions

% (multivariate Gaussians spread a little along wl and w2
x1 = mvnrnd([4;1],wl*wl',n/2) + .l*randn(n/2,2);

x2 = mvnrnd([4;1],w2*w2',n/2) + .l*randn(n/2,2);

% Concatenate the two clouds of data

X = [x1;x2]";

figure
plot(x(1l,:),x(2,:), '0")
grid on

axis equal

6.5

Random projection w'X

b v v
4
L3 by 1
3 d- 00 -
<
2 - 1
' m
Ly
2
‘ m -
-1
oz = 1
‘ -
-3 20
=
-4 “ &« -
n
-5
{ { : } } al= - 8- . .
4 2 Bl c 1 2 A5 B [n a 0 2 o 3
— S TN TV RJ
L .
. 14> a- 2
3
o 12>
E
24 L) 1
1
2 <
=
R >]
'Y
L3
-2
& 2
-5
A M A N 5
1 2 1 0 ! 2

-2F

3F

8]

”

-1t

pow3 (skewness)

=4
< das
— T g My
Com = varance

<

o
A -

5 < -1 0 1 Z

logcosh (tanh)

)
< &
ar — g ard g
I edich
v
»h
1
o '
2 F c
:) - c
-2 o O
-0
- O
3+
3 2 1 ¢ 1 2 E ¢

Beyond 2D

We can't just look at the 2D projections

We need an algorithm fo finding w

We have a cost function! E (TX)] stwliw =1

FastlCA = Newton-like algorithm

ICA

mixed
data signals
mixing

matrix

ICA

mixed
data signals
mixing

matrix

ICA

mixed

data signals
mixing
matrix

W= A-1

ICA

mixed

data signals
mixing
matrix

W= A-1

signals

||||||
matrix

Temporal PP

AS

S (2xn)

mixed

Y e Y
—
7
$
- — -
——
-
-
-~
-
.lv
-
-—
S
-
—
_—
'..
—
=
-
1 "
>
—
—
e
o — -
-
- -
- 'Il'- R
-
‘.
-~
v\
\A
<
-
-
- N .
 —
- L
-
-
*'
=
e
T —
- - - -
-
p—
”
<
L~
ot
-
—
-
s — -
]

300 350 400

250

-05 |

150 200

100

Ll | LJ
! X 4
—
-
-~
B
3
oL
! - 4
-
e
-
-
L‘
s \ .
2
-
a\l.\ N
.
- .
L.
B 3
| K
<
<
L
—
g
- -
P
> -
<
.|
- -
>
2
d
y= o

05

05

150

100

300 350 400

250

PCA
not sphered

ICA (PP)
sphered

0.5

-2.5

-0.5

-1.5

-1

0.5/

0‘5.’. \

- A

A A \ 'l .M [

i .\‘ ."'l

| .,‘

\, ,| “;.

'IV \‘

' 'ﬁ:{ H'; \\' \.,

Successful unmixing

Still some mixing

Spatial PP

Spatial PP

Spatial PP

space - compor egts space

spatial maps

gLl
|
el
‘U\Mlg “
g
)
sjusuoduiod

FMRI data ‘_;

B

space

Spatial PP

FMRI data

FMRI data

eun

ccm orents

r “W "L",'r '\J l)

¥

l'

slusuoduio?

SE&CG

spatial maps

spatial maps

Interpretation: similarity
between voxel time course and
|C time course

T

right tail

On orthogonality

On orthogonality

* When we talk about IC's what are we talking about?

On orthogonality

* When we talk about IC's what are we talking about?

e Remember: X=AS

On orthogonality

* When we talk about IC's what are we talking about?
e Remember: X=AS

e pbut X is sphered: QX=AS

On orthogonality

When we talk about IC's what are we talking about?
Remember: X=AS

but X is sphered: QX=AS

A = mixing matrix = W-1

On orthogonality

When we talk about IC's what are we talking about?
Remember: X=AS

but X is sphered: QX=AS

A = mixing matrix = W-1

--> X=Q1AS

On orthogonality

When we talk about IC's what are we talking about?
Remember: X=AS

but X is sphered: QX=AS

A = mixing matrix = W-1

--> X=Q1AS

rows of S (independent components) are actually orthogonal!

On orthogonality

When we talk about IC's what are we talking about?
Remember: X=AS

but X is sphered: QX=AS

A = mixing matrix = W-1

--> X=Q1AS

rows of S (independent components) are actually orthogonal!

This is because: SST=(WQX)TWQX=WQXXTQTWT=WWT=I|dentity

Difference between ICA and
projection pursuit

Difference between ICA and
projection pursuit

* |CA (like PCA) has an explicit model: X = A*S whereas PP
only has data and tries to find w s.t. w'X has a funky
distribution

Difference between ICA and
projection pursuit

* |CA (like PCA) has an explicit model: X = A*S whereas PP
only has data and tries to find w s.t. w'X has a funky
distribution

e Because ICA has a model of the data, it can be
augmented with e.g. noise model (like Melodic), explicit
model for S (e.g. mixture of gaussians like FLICA or other
mixtures like PROFUMO), etc.

Difference between ICA and
projection pursuit

* |CA (like PCA) has an explicit model: X = A*S whereas PP
only has data and tries to find w s.t. w'X has a funky
distribution

e Because ICA has a model of the data, it can be
augmented with e.g. noise model (like Melodic), explicit
model for S (e.g. mixture of gaussians like FLICA or other
mixtures like PROFUMO), etc.

e But FastICA is PP with nice approximations to neg-
entropy and an efficient algorithm for finding w

The end.

