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How to make sense of a table of data?

Jonathan Power “The Plot”

FMRI dataImages
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• Solution: project onto all the direction and look at the 
histogram for some interesting features

How do we find w?



• Defining "interestingness"


• PP


• ICA

Plan of talk:



Notation

• Data is a matrix X    (dimensions: features x samples)


• Direction vector is w (features x 1)


• If we want more that one vector then it is W (features x p)
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Variance( wTXc) = E[ (wTXc)2]

1/n*(wTXc)(wTXc)T=

1/n*wT(XcXcT)w=

1st eigenvector of covariance matrix

max

PCA!

(theorem: a symmetric matrix M [like XXT] has all the eigenvectors 
and one of them points in the direction of maximum xTMX)

Maximising the variance
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PCA 
• Capture largest variance


• Incidentally, approximate the data best

w
wTX 1D version of X

wwTX same dimensions as X

|X-wwTX|2 minimize this wrt w?

trace(  (X-wwTX )(X-wwTX )T )
+wwTXXTwwT-wwTXXT -XXTwwTtrace( )

-wTXXTwtrace( )
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PCA interpretations
• Capture largest variance


• Best approximation to data


• Direction that is most aligned with data

w

wTXXTw = sum_squares( XTw)



The problem with PCA
The direction of maximum variance is not always interesting



Interestingness

• Location of data should not matter --> centering


• Orientation of data should not matter --> Ok. 


• Variance? 



Sphering
n.k.a. whitening

• How to make it so Variance( wTXc) = 1 for all w ?



Sphering
n.k.a. whitening

• How to make it so Variance( wTXc) = 1 for all w ?

Xc --> Xs = QXc



Sphering
n.k.a. whitening

• How to make it so Variance( wTXc) = 1 for all w ?

n* Variance( wTQXc) = wT(QXc(QXc)T)w = wTQXcXcTQTw

Xc --> Xs = QXc



Sphering
n.k.a. whitening

• How to make it so Variance( wTXc) = 1 for all w ?

n* Variance( wTQXc) = wT(QXc(QXc)T)w = wTQXcXcTQTw

XcXcT = UDUT eigenvalue decomposition

Xc --> Xs = QXc



Sphering
n.k.a. whitening

• How to make it so Variance( wTXc) = 1 for all w ?

n* Variance( wTQXc) = wT(QXc(QXc)T)w = wTQXcXcTQTw

XcXcT = UDUT eigenvalue decomposition

wT(QXcXcTQT)w = wTQUDUTQTw

Xc --> Xs = QXc



Sphering
n.k.a. whitening

• How to make it so Variance( wTXc) = 1 for all w ?

n* Variance( wTQXc) = wT(QXc(QXc)T)w = wTQXcXcTQTw

XcXcT = UDUT eigenvalue decomposition

wT(QXcXcTQT)w = wTQUDUTQTw

Xc --> Xs = QXc

QUDUTQT = Identity



Sphering
n.k.a. whitening

• How to make it so Variance( wTXc) = 1 for all w ?

n* Variance( wTQXc) = wT(QXc(QXc)T)w = wTQXcXcTQTw

XcXcT = UDUT eigenvalue decomposition

wT(QXcXcTQT)w = wTQUDUTQTw

Xc --> Xs = QXc

QUDUTQT = Identity

Q= UD-1/2UT



Sphering
n.k.a. whitening

• How to make it so Variance( wTXc) = 1 for all w ?

n* Variance( wTQXc) = wT(QXc(QXc)T)w = wTQXcXcTQTw

XcXcT = UDUT eigenvalue decomposition

wT(QXcXcTQT)w = wTQUDUTQTw

Xc --> Xs = QXc

QUDUTQT = Identity

Q= UD-1/2UT project onto eigenvectors

rescale (undo what X does)

project back



Centering
function X_c = center(X) 

n = size(X,2); 
C = eye(n) - ones(n,1)*ones(1,n)/n; 
X_c = X*C;

function X_c = center(X) 
X_c = X - mean(X,2);



Sphering whitening

function X_s = whiten(X) 
  

[V,D] = eig(cov(X')); 
Q = V*diag(1./sqrt(diag(D)))*V'; 
X_s = Q*center(X); 



centered whitened

variance long different orientations

function plot_var(X)


angles = linspace(0,2*pi,1000);   % angles to calculate variance along

V      = zeros(size(angles));     % Variance

for i=1:length(angles)

    % get vector w along angle 

    [w_x,w_y] = pol2cart(angles(i),1);

    w = [w_x;w_y];

    % calculate cf along w

    V(i) = var(w'*X);

end


figure,hold on

plot(X(1,:),X(2,:),'bo')


[xx,yy] = pol2cart(angles,V);

plot(xx,yy,'linewidth',2,'color','k','linestyle','--')

axis equal

grid on




Interestingness

What is uninteresting?

Gaussian I am afraid

(everything is Gaussian by default)
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Gaussians are boring

• If you randomly project X, chances are you get a 
Gaussian (central limit theorem)

• Gaussian is the maximum entropy distribution (if you fix 
the mean and variance)

• So..... minimize entropy! (maximize neg-entropy). I.e. 
maximize non-gaussianity.
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Maths of relative entropy 
and gaussians

Relative entropy  = -∫p.log(q/p) Distance between p and q (>=0)

Entropy  = -∫p.log(1/p) A bit like distance between p and 1 (no 
structure)

-∫p.log(q/p)  = -∫p.log(q)  -∫p.log(1/p)

q Gaussian -> log(q) is quadratic = -∫q.log(q)  - Entropy(p)
-> Ep[log(q)] = Eq[log(q)] = combination of 
1st and 2nd moments! = Entropy(q)  - Entropy(p)

>=0

Gaussian = maximum entropy when mean and variance fixed
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Ok, but how do you actually 
calculate entropy?

• hmm...  we are given samples, not the actual data 
distribution

• kernel density not an option (we need to find w with 
optimization)

• approximation



variance

other (as long as g is 
not quadratic)

Advantages of approximation:

continuous function (good for optimization)


easy to calculate (unlike entropy)



(gauss) (tanh)

(skew,pow3) (kurt,pow4)



Let's try this



n = 400;  % number of samples 
d = 2;    % dimensionality 
 
w1 = randn(d,1); 
w1 = w1/norm(w1);  % direction 1 is random
ang = 30;          % rotation angle
rot = [cosd(ang) sind(ang);   %rotation matrix
      -sind(ang) cosd(ang)];
w2 = rot*w1;       % direction 2 is rotated re direction 1
 
% Generate data along the two directions
% (multivariate Gaussians spread a little along w1 and w2
x1 = mvnrnd([4;1],w1*w1',n/2) + .1*randn(n/2,2);
x2 = mvnrnd([4;1],w2*w2',n/2) + .1*randn(n/2,2);

% Concatenate the two clouds of data
x = [x1;x2]';

figure
plot(x(1,:),x(2,:),'o')
grid on
axis equal

E.g. rFMRI spatial ICA:

each point = voxel

each axis = time point



Random projection w'X



Gauss logcosh (tanh)

pow3 (skewness) pow4 (kurtosis)



Beyond 2D

• We can't just look at the 2D projections


• We need an algorithm fo finding w


• We have a cost function!  


• FastICA = Newton-like algorithm

s.t.
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ICA
X = AS

X = A S

X =W S
W = A-1

X =w s

PP

mixing 
matrix

mixed 
signalsdata



Temporal PP
S (2xn) AS

(As)1

(A
s)

2



ICA (PP) PCA
sphered not sphered



Successful unmixing

Still some mixing



Spatial PP
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Spatial PP
X = A S

=

Interpretation: similarity 
between voxel time course and 

IC time course
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On orthogonality
• When we talk about IC's what are we talking about?

• Remember:   X=AS 

• but X is sphered:  QX=AS

• A = mixing matrix = W-1

• --> X=Q-1AS

• rows of S (independent components) are actually orthogonal!  

• This is because:  SST=(WQX)TWQX=WQXXTQTWT=WWT=Identity
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Difference between ICA and 
projection pursuit

• ICA (like PCA) has an explicit model:  X = A*S whereas PP 
only has data and tries to find w s.t. w'X has a funky 
distribution

• Because ICA has a model of the data, it can be 
augmented with e.g. noise model (like Melodic), explicit 
model for S (e.g. mixture of gaussians like FLICA or other 
mixtures like PROFUMO), etc.

• But FastICA is PP with nice approximations to neg-
entropy and an efficient algorithm for finding w



The end.


