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y = M*x

find x?

The GLM

There is a linear relationship between M and y

    1.0000    0.5377 
    1.0000    1.8339 
    1.0000   -2.2588 
    1.0000    0.8622 
    1.0000    0.3188 
    1.0000   -1.3077 

    0.4613 
    0.8502 
   -0.3777 
    0.5587 
    0.3956 
   -0.0923

? 
? 

y M x?

    1.0000 x1 + 0.5377 x2 =  
    1.0000 x1 + 1.8339 x2 = 
    1.0000 x1 + -2.2588 x2 = 
    1.0000 x1 + 0.8622 x2 = 
    1.0000 x1  + 0.3188 x2 = 
    1.0000 x1 + -1.3077 x2 = 

    0.4613 
    0.8502 
   -0.3777 
    0.5587 
    0.3956 
   -0.0923

Simultaneous equations



Examples

y

x

M

FMRI Time series  
from one voxel

“regressors”  
(e.g.: the task)

PEs 
(parameter estimates)

some measure 
 across subjects 
from one voxel

“regressors”  
(e.g.: group membership)

PEs 
(parameter estimates)

Behavioural scores 
across subjects

Age, #Years at school

PEs 
(parameter estimates)

y = M*x



The GLM

x = pinv(M)*ysolution : 
(the actual matlab command)

what is the pseudo-inverse pinv ?

y = M*x

find x?

There is a linear relationship between M and y



y

‘M space’

ŷ

Must find the best (x,ŷ) such that ŷ =M*x (we can’t get out of M space)

ŷ is the projection of y onto the ‘M space’
x are the coordinates of ŷ in the ‘M space’
pinv(M) is used to project y onto the ‘M space’

This section is about the ‘M space’

y = M*x



• vectors, matrices

• dimension, independence

• sub-space, rank

In order to understand the ‘M space’, we 
need to talk about these concepts:



definitions 

• Vectors and matrices are finite collections of  “numbers”

• Vectors are columns of numbers

• Matrices are rectangles/squares of numbers

x1

x2

x3

x4

x5

x11

x21

x31

x41

x51

x12

x22

x32

x42

x52

x13

x23

x33

x43

x53



vector in a 1-dimensional space

vectors 
x1

x1

x2

x3

vector in a 3-dimensional space

vector in d-dimensional space

x1

x2

x3

xd-2

xd-1

xd



❚ Adding vectors
❙ add element-wise 
 
 

❚ Scaling of vectors 
❙ multiply element-wise

vectors 

❚ Linear combinations of vectors
 c = g.a+h.b

a, b and c in the same d-dimensional space

a

b

a+b

b
2b



vectors 
About d-dimensional vectors

The “arrow” picture is also useful in d-dimensions, as any vector is in 
effect one-dimensional.

x1

x2

x3

xd-2

xd-1

xd



❚ Linear combinations of vector

vectors 
c = g.a+h.b

x=a*e1+b*e2

x

e1

e2

any 2D vector is a linear
combination of e1 and e2

x=a*x1+b*x2

x

x1

x2

?

what about a linear combination
 of any 2 vectors?

x=a*x1+b*x2

x

x1

x2

?

what if the two vectors are co-
linear?



“spanning”

spanning means covering using linear combinations

x

y

E.g.:   z=a*x+b*y

space covered by z for all a and b is the space that x and y span

x and y span a 2D space



these two vectors span 2 dimensions
can they span 3?

vectors can span a “sub-space”

dimensions of the sub-space relates to “linear independence”

“spanning”

these two vectors 
span 1 dimension



linear independence

can we write x=a.y ?

x

y

can we write x=a.y+bz ?

x

y

z

the vectors x1 x2 x3 ... xn are linearly independent if 
none of them is a linear combination of the others



In higher dimensions

1
3
5
7
2
2

2
6
10
14
4
4

these two vectors 
are not linearly independent

(x2=2*x1)
x1 x2

      0.9298    1.1921    1.0205   -2.4863    0.0799    0.8577
    0.2398   -1.6118    0.8617    0.5812   -0.9485   -0.6912
   -0.6904   -0.0245    0.0012   -2.1924    0.4115    0.4494
   -0.6516   -1.9488   -0.0708   -2.3193    0.6770    0.1006

what about these?
how many “linearly independent” 

vectors?
x1 x2 x3 x4 x5 x6

hard to tell, but there 
can’t be more than 4 



Theorem

The number of independent 
vectors is smaller than the 

dimension of the space

x

y

z

2D example:



Theorem
Given a collection of vectors, the space of all linear 
combinations has dimension equal to the number 

of linearly independent vectors 

This space is called a “sub-space”

x

y

2D example:
(dimension of sub-space spanned by {x,y} is 1)



Matrices



❚ Matrices, what are they?
❙ A matrix is a rectangular arrangement of values and is usually denoted by a 

BOLD UPPER CASE letter, e.g. 
 
 
 
and 

Is an example of a 2-by-2 matrix

Is an example of a 2-by-3 matrix

Matrices 



=*4 rows

6 columns

Multiplying a matrix by a vector  
6dimensions ⟼ 4dimensions

Input
(6D)

Output
(4D)

aij

xi

Matrices 



=*4 rows

6 columns

Input Output

Multiplying a matrix by a vector  
6dimensions ⟼ 4dimensions

Matrices 



=*4 rows

6 columns

Input Output

Multiplying a matrix by a vector  
6dimensions ⟼ 4dimensions

Matrices 



=*4 rows

6 columns

Input Output

Multiplying a matrix by a vector  
6dimensions ⟼ 4dimensions

Matrices 



❚ Matrix multiplication as linear combinations of vectors
❙ Let  
 
 

❙ then 
 
 
i.e. the vector Ab is a linear combination of the vectors constituting the 
columns of A, i.e. it lies in the “column space” of A. 

definitions 



what does this imply?

=*4 rows

3 columns

Input Output

The output is a linear combination of the columns
The output sub-space is the space spanned by the columns
The dimension of the output sub-space is smaller or equal 
to the number of columns



rank
The rank of a matrix is the number of independent 
columns

Full rank means equal to the maximum possible 

Otherwise it is said to be rank deficient



y

‘M space’

ŷ

M*pinv(M) is the projector on the ‘M space’
x are the coordinates of ŷ in the ‘M space’



y

‘M space’

ŷ

x = pinv(M) * y 
ŷ = M*x = M*pinv(M)*y

M

x
projector

m1 m2

m2

m1

M*pinv(M) is the projector on the ‘M space’
x are the coordinates of ŷ in the ‘M space’



• x are the coordinates of ŷ in the space spanned by the 
columns of M

• x tells us “how much” of each column we need to 
approximate y

• the best approximation we can get is the projection onto the 
‘M space’

• we cannot get closer (out of ‘M space’) because that is what 
the columns of M span

• But if y is already in M-space, we get a perfect fit



End of part one

• The columns of the design matrix span the 
space “available” from the regressors (M-space)

• The pseudo-inverse finds the best vector of the 
M-space 

• Next: Eigen-values/Eigen-vectors



Part two. 

• Eigenvectors and eigenvalues

• PCA



y=Mx
linear combination of columns of M coefficients of the linear combination

    1.0000    0.5377 
    1.0000    1.8339 
    1.0000   -2.2588 
    1.0000    0.8622 
    1.0000    0.3188 
    1.0000   -1.3077 

    0.4613 
    0.8502 
   -0.3777 
    0.5587 
    0.3956 
   -0.0923

0.3 
0.3

y M x

=

output input



Special vectors

x

y z = x+2*y
Mz = Mx+2*My

If x and y are such that:  Mx=ax
My=by

Then: Mz = ax+2*by

z

x

y

z

Mz

a=2, b=1

x

y

z

Mz

a=2, b=0

x

y

z
Mz

a=-1, b=2



• (x,a) and (y,b) are “intrinsic properties” of 
M that tell us how to transform any vector

• Easy to see what happens if an eigenvalue 
dominates the others

• Intuition for why small eigenvalue means 
close to rank deficiency

need huge input to create 
output along weaker 

eigenvectors

Special vectors

x

y

z

Mz

a=2, b=0.0001Mz = ax+2*by



Mx = λ x

Eigenvector

Eigenvalue



• Mx= λx

Special vectors

This means M is a square matrix

How do we find x?



[V,D]=eig(M)Matlab:

Eigenvalues
Eigenvectors



Examples in 2D

2
1

0
3

M = 

λ1 = 3
λ2 = 2

Positive definite matrix



Examples in 2D

-1
2

1
3

M = 

λ1 = -1.4495
λ2 = 3.4495

Negative eigenvalue



Examples in 2D

0.866 -0.5
M = 

λ1 = ???
λ2 = ???

0.5 0.866

Rotation matrix



Examples in 2D

1
2

2
4

M = 

λ1 = 0
λ2 = 5

Rank deficient matrix



Examples in 2D

3
1

1
3

M = 

λ1 = 2
λ2 = 4

Symmetric matrix



Symmetric matrices 
examples

Covariance matrix
Correlation matrix

MMT and MTM for any rectangular matrix M

M MT



Why is this interesting?

• We can generalise eigenvectors/values to 
rectangular matrices (by looking at MTM or MMT )



what is this for?

• Approximate rank

• Approximate matrix



Rank and transpose

• rank(M) = rank(MT) = rank(MMT) = rank(MTM)

Remember: the rank of a matrix is the dimension of the output 
sub-space

theorem

M

MT



I can calculate the eigenvalues of MMT (always)

MMTM

MT

Let’s say I find them to be 1.5, 2.0, 0.0001, 0

Then the approximate rank of M is 2

Approximate the rank



Approximate a matrix



When the columns of M are 
demeaned, MTM is the covariance

Sum{ (xi-mean(x)) . (yi-mean(y)) }

* =

MT M

x y



    1.3401    2.1599   -0.4286    1.5453    1.2016    0.1729    0.7258    1.2167    3.2632    2.7515
    2.9208    3.0004    0.2012    2.3979    2.4349    0.5834    1.9231    2.7030    5.9159    4.1647

data

M =[ ...]

* =

MT M

x y



Now what is MTx ?

* =

MT x

We want an x that “looks like” most of the data points

i.e. maximise |MTx| 
(with |x|=1 for example, otherwise take |x|=infinity!)



Some maths
xTMMTx = (MTx)T(MTx)=|MTx|2

maxmax

MMT is symmetric! Max is along first eigenvector!



MMTv=λv

“Principal” eigenvector of MMT is 
best 1D approx to the data



Principal component 
analysis

Data projected onto first principal component

 reduced data = Mv
 reduced data in original space = MvvT



Principal component 
analysis

Identifying directions of large variance in data

data
n

m

. dimensionality reduction

. denoising

. finding patterns



Assumptions in PCA

• The data is a linear combination of 
“interesting” components    

• Variance is a good (sufficient?) feature

• Large variance is “interesting”



Assumptions in PCA

• The data is a linear combination of 
“interesting” components

• Variance is a good (sufficient?) feature

• Large variance is “interesting”

Alternatives: 
Kernel PCA, MDS,Laplacian 

eigenmaps, etc.



Assumptions in PCA

• The data is a linear combination of 
“interesting” components

• Variance is a good (sufficient?) feature

• Large variance is “interesting”

(Alternative: LDA)



Example 
PCA of the world



1 (38%)

2 (51%)

5 (70%)

10 (78%)

20 (85%)

100 (95%)

628 (100%)

Example 
PCA of the world

new data add mean original data





That’s all folks.


