linear algebra

Saad Jbabdi

- Matrices & GLM
- Eigenvectors/eigenvalues
- PCA

linear algebra

Saad Jbabdi

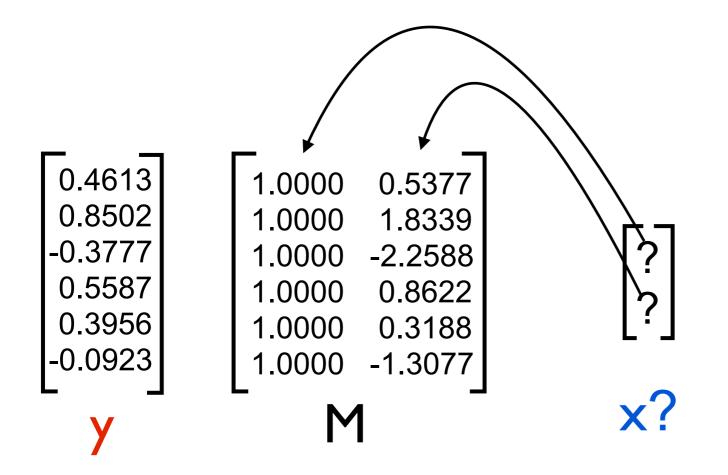
- Matrices & GLM
- Eigenvectors/eigenvalues
- PCA

The GLM

y = M*x

There is a linear relationship between M and y

find x?



Simultaneous equations

Examples

y = M***x**

У

FMRI Time series from one voxel some measure across subjects from one voxel

Behavíoural scores across subjects

"regressors" "regressors"
 (e.g.: the task) (e.g.: group membership)
 Age, #Years at school

PEsPEsPEsX(parameter estímates)(parameter estímates)(parameter estímates)

The GLM

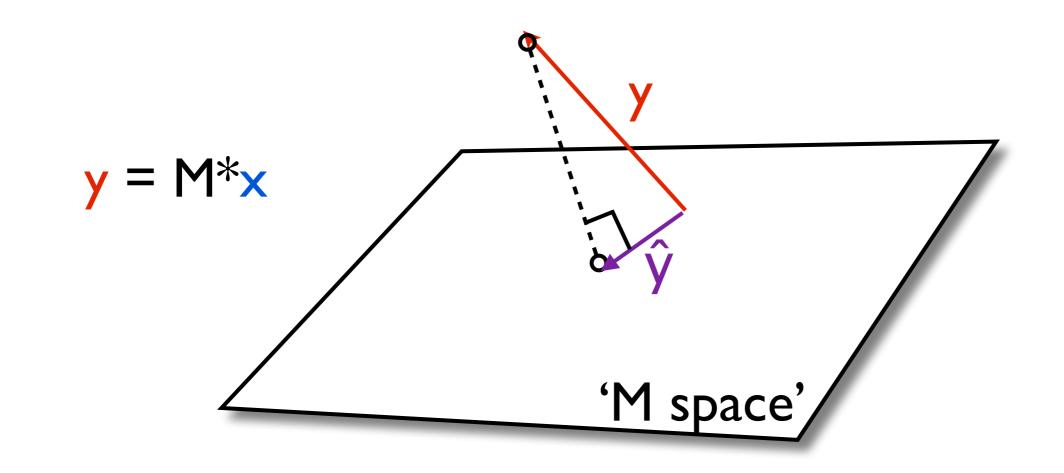
y = M***x**

There is a linear relationship between M and y

find x?

solution: x = pinv(M)*y(the actual matlab command)

what is the pseudo-inverse pinv?



Must find the best (x, \hat{y}) such that $\hat{y} = M^* x$ (we can't get out of M space) \hat{y} is the projection of y onto the 'M space' x are the coordinates of \hat{y} in the 'M space' pinv(M) is used to project y onto the 'M space'

This section is about the 'M space'

In order to understand the 'M space', we need to talk about these concepts:

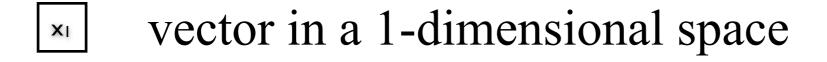
- vectors, matrices
- dimension, independence
- sub-space, rank

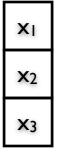
definitions

- Vectors and matrices are *finite* collections of *"numbers"*
- Vectors are columns of numbers
- Matrices are rectangles/squares of numbers

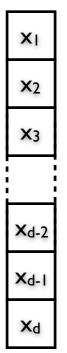
XI	
x 2	
X3	
X 4	
X5	

хII	X 12	X13
x 21	X 22	X 23
X 31	X 32	X33
X 41	X 42	X 43
X 51	X 52	X53





vector in a 3-dimensional space



vector in d-dimensional space

- Adding vectors
 - add element-wise

$$\mathbf{a} + \mathbf{b} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1+2 \\ 3+1 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

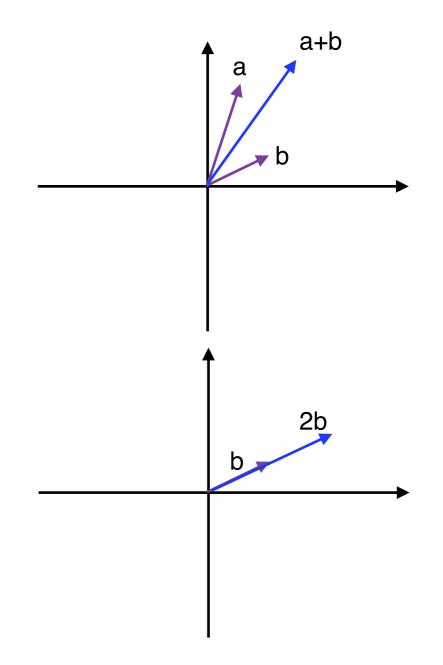
- Scaling of vectors
 - multiply element-wise

$$c\mathbf{b} = 2 \times \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \times 2 \\ 2 \times 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

Linear combinations of vectors

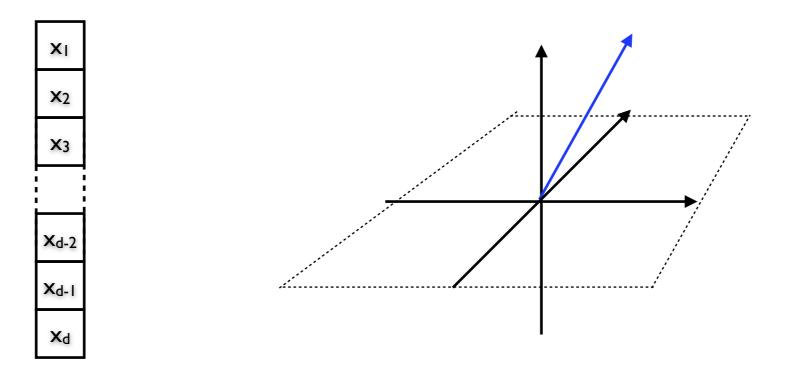
$$\mathbf{c} = g.\mathbf{a} + h.\mathbf{b}$$

a, **b** and **c** in the same d-dimensional space



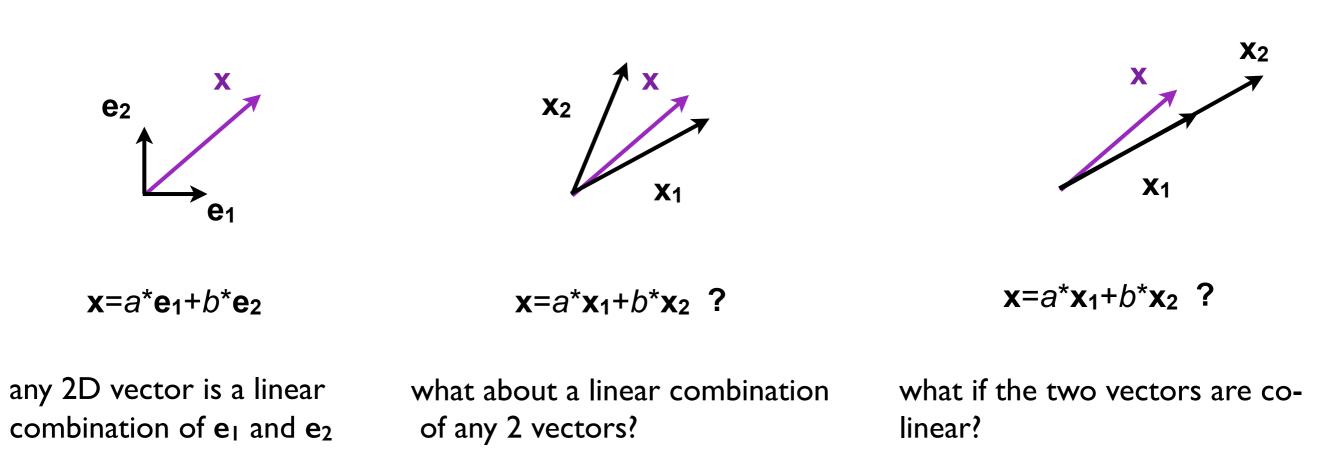
About d-dimensional vectors

The "arrow" picture is also useful in d-dimensions, as any vector is in effect one-dimensional.

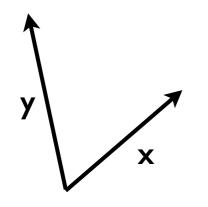


Linear combinations of vector

c = g.**a**+h.**b**



"spanning"

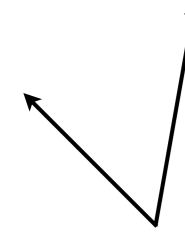


spanning means covering using linear combinations

E.g.: **z**=*a****x**+*b****y**

space covered by z for all a and b is the space that x and y span

"spanning"



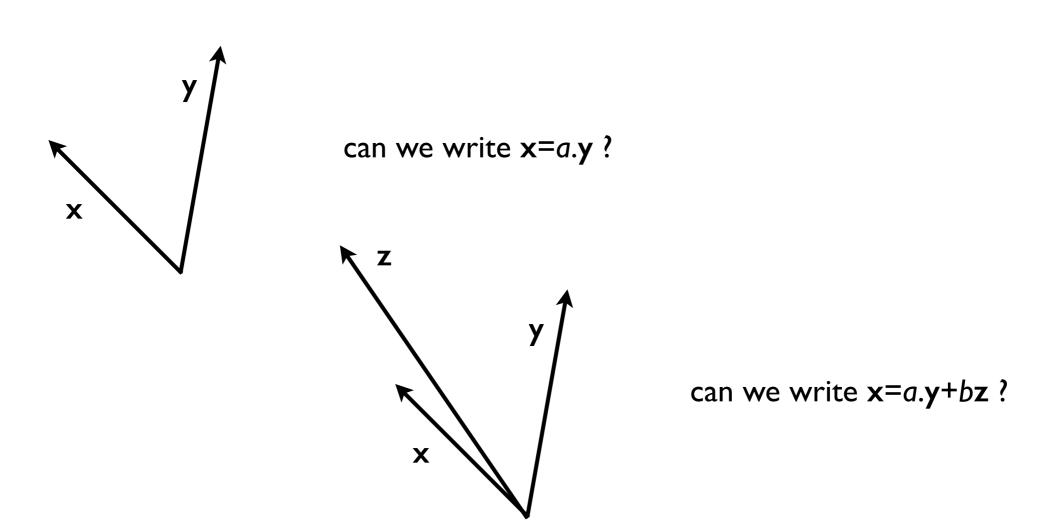
these two vectors span 2 dimensions can they span 3?

these two vectors span I dimension

vectors can span a "sub-space"

dimensions of the sub-space relates to "linear independence"

linear independence



the vectors $x_1 x_2 x_3 ... x_n$ are linearly independent if none of them is a linear combination of the others

In higher dimensions

Г 7		
1	2	
3	6	
3 5	10	
7	14	
2	4	
22	4	
XI	X	2

these two vectors are not linearly independent $(x_2=2*x_1)$

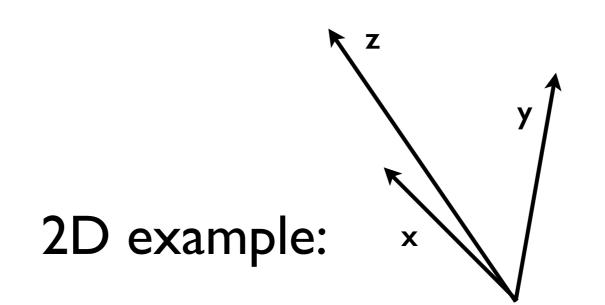
what about these? how many "linearly independent" vectors?

0.9298	1.1921	I.0205	-2.4863	0.0799	0.8577
0.2398	-1.6118	0.8617	0.5812	-0.9485	-0.6912
-0.6904	-0.0245	0.0012	-2.1924	0.4115	0.4494
-0.6516	-1.9488	-0.0708	-2.3193	0.6770	0.1006
XI	X 2	X 3	X 4	X 5	X 6

hard to tell, but there can't be more than 4

Theorem

The number of independent vectors is smaller than the dimension of the space



Theorem

Gíven a collection of vectors, the space of all linear combinations has dimension equal to the number of linearly independent vectors

This space is called a "sub-space"



Matrices, what are they?

A matrix is a rectangular arrangement of values and is usually denoted by a **BOLD UPPER CASE** letter, e.g.

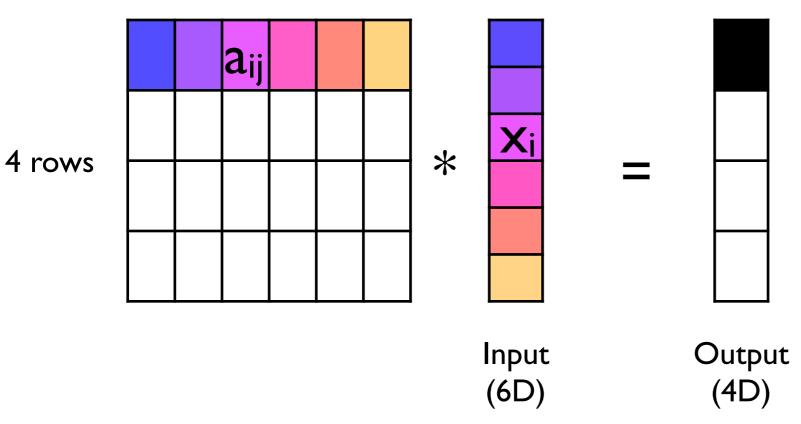
$$\mathbf{A} = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}$$
 Is an example of a 2-by-2 matrix

and

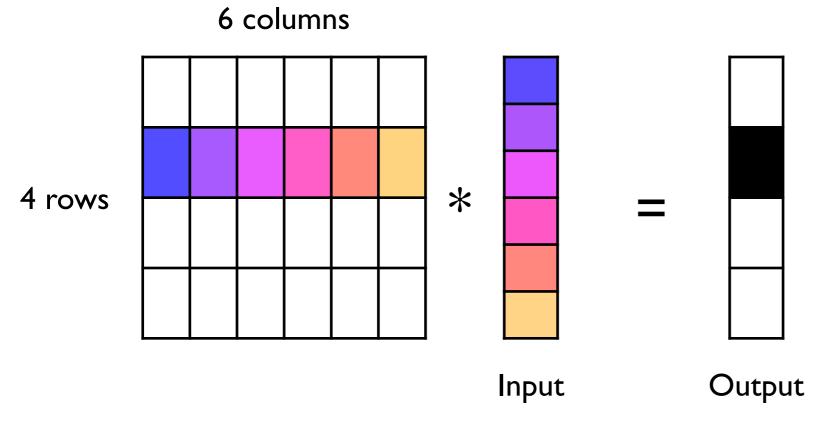
$$\mathbf{B} = \begin{bmatrix} 4 & 7 & 6 \\ 4 & 1 & 5 \end{bmatrix}$$
 Is an example of a 2-by-3 matrix

Multiplying a matrix by a vector 6dimensions \mapsto 4dimensions

6 columns

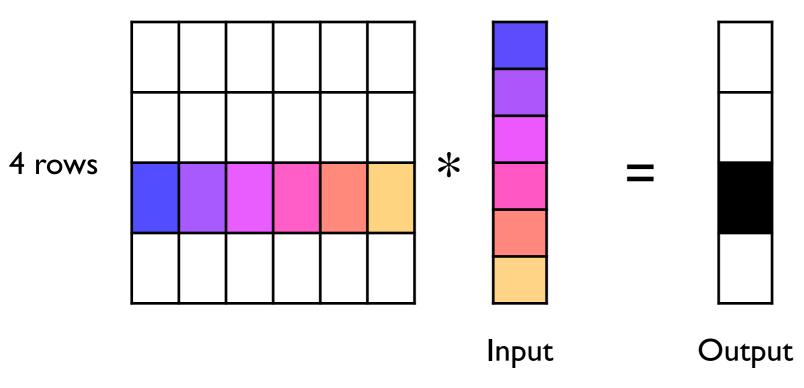


Multiplying a matrix by a vector 6dimensions \mapsto 4dimensions



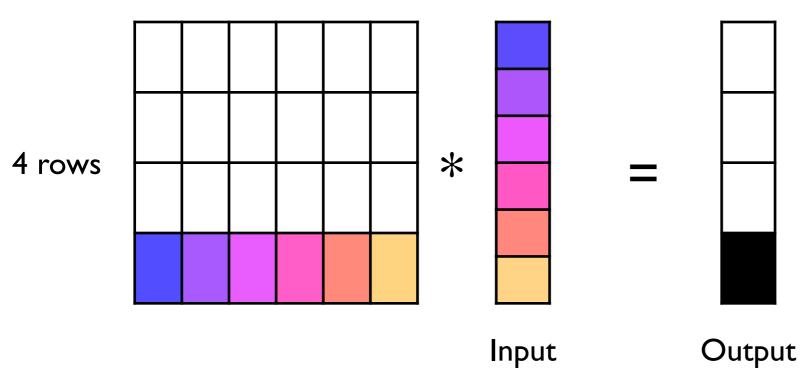
Multiplying a matrix by a vector 6dimensions \mapsto 4dimensions

6 columns



Multiplying a matrix by a vector 6dimensions \mapsto 4dimensions

6 columns



definitions

Matrix multiplication as linear combinations of vectors

Let

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

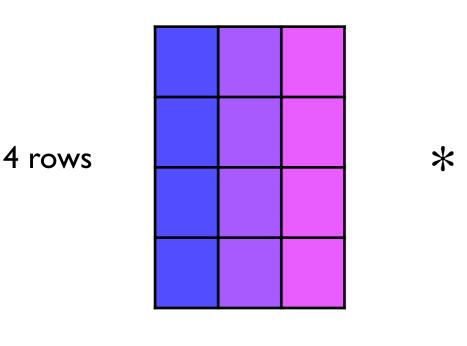
then

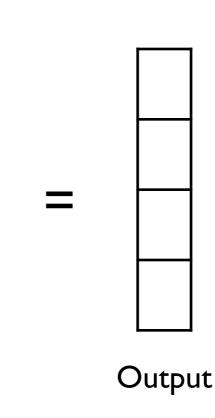
i.e. the vector **Ab** is a linear combination of the vectors constituting the columns of **A**, i.e. it lies in the "column space" of **A**.

$$\mathbf{A}\mathbf{b} = b_1\mathbf{a}_1 + b_2\mathbf{a}_2 = b_1\begin{bmatrix}a_{11}\\a_{21}\end{bmatrix} + b_2\begin{bmatrix}a_{12}\\a_{22}\end{bmatrix}$$

what does this imply?

The output is a linear combination of the <u>columns</u> The output sub-space is the space spanned by the <u>columns</u> The <u>dimension</u> of the output sub-space is smaller or equal to the number of <u>columns</u>





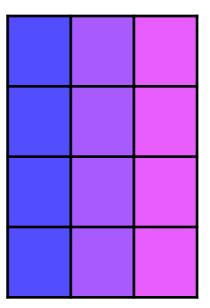
Input

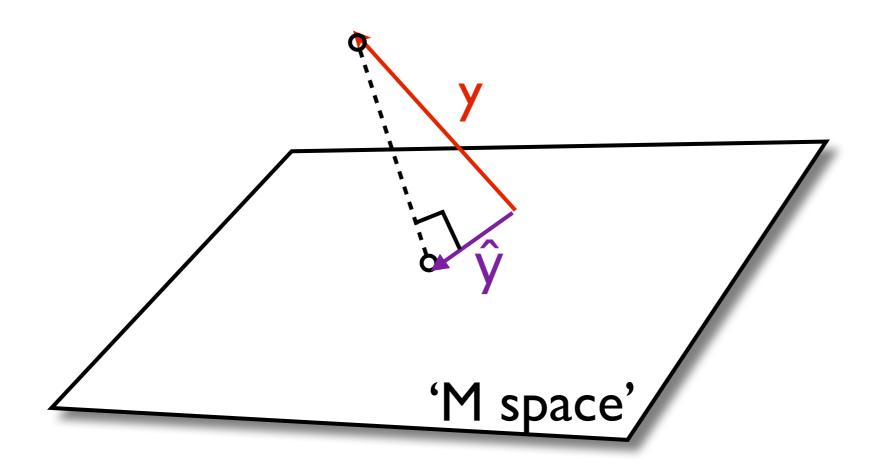
rank

The rank of a matrix is the number of independent columns

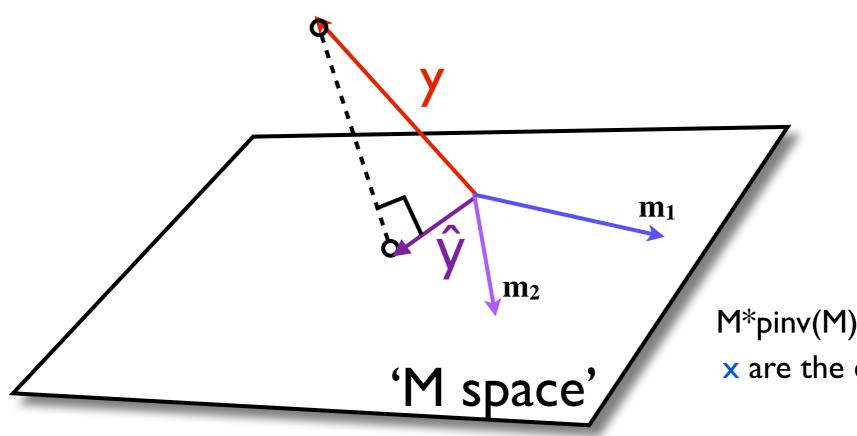
Full rank means equal to the maximum possible

Otherwise it is said to be rank deficient



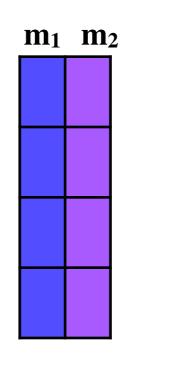


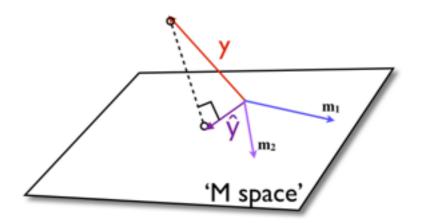
M*pinv(M) is the projector on the 'M space' x are the coordinates of \hat{y} in the 'M space'



 $M^*pinv(M)$ is the projector on the 'M space' x are the coordinates of \hat{y} in the 'M space'

X





- x are the coordinates of \hat{y} in the space spanned by the columns of M
- x tells us "how much" of each column we need to approximate y
- the best approximation we can get is the projection onto the 'M space'
- we cannot get closer (out of 'M space') because that is what the columns of M span
- But if y is already in M-space, we get a perfect fit

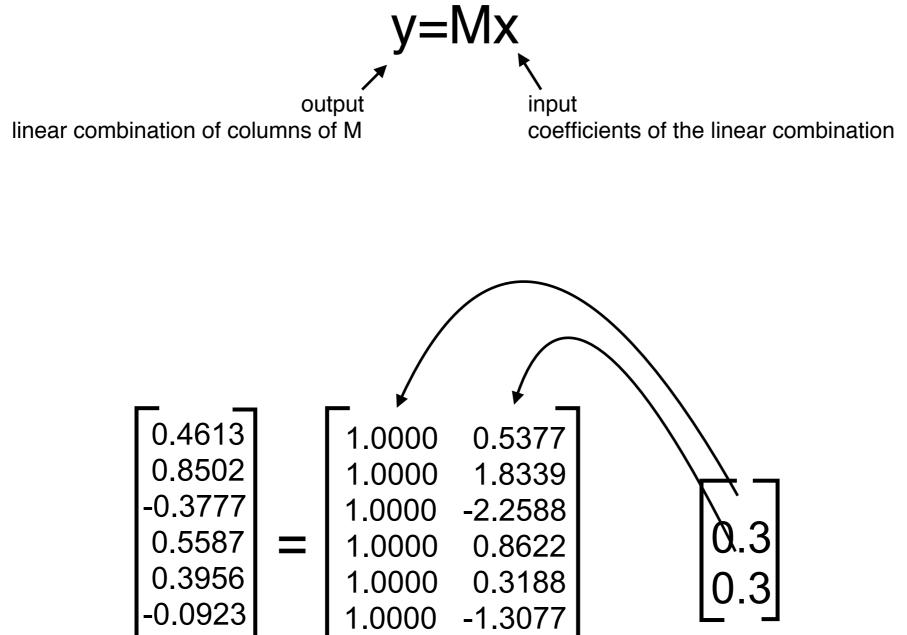
End of part one

- The columns of the design matrix span the space "available" from the regressors (M-space)
- The pseudo-inverse finds the best vector of the M-space

• Next: Eigen-values/Eigen-vectors

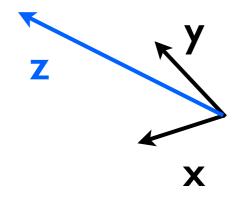
Part two.

- Eigenvectors and eigenvalues
- PCA



y M ×

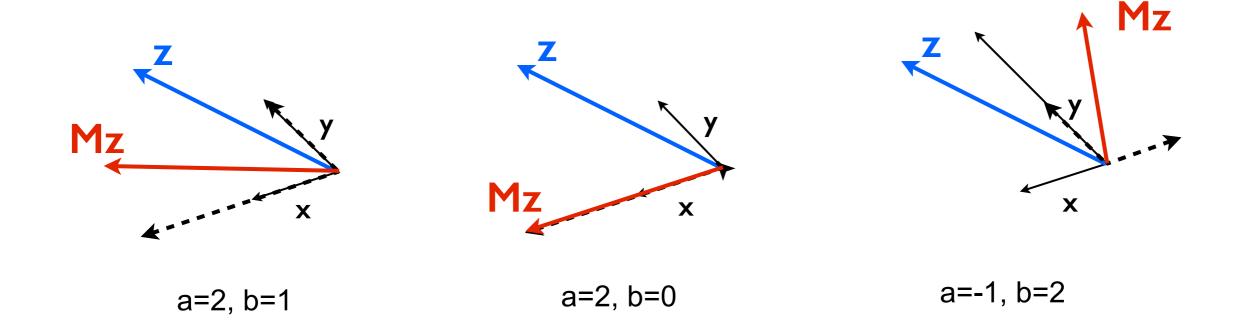
Special vectors



$$z = x+2*y$$
$$Mz = Mx+2*My$$

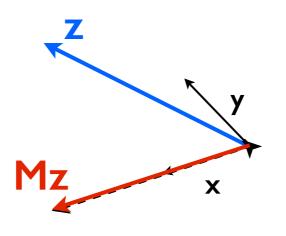
If x and y are such that: $M_{x=ax}$ My=by

Then: Mz = ax+2*by



Special vectors

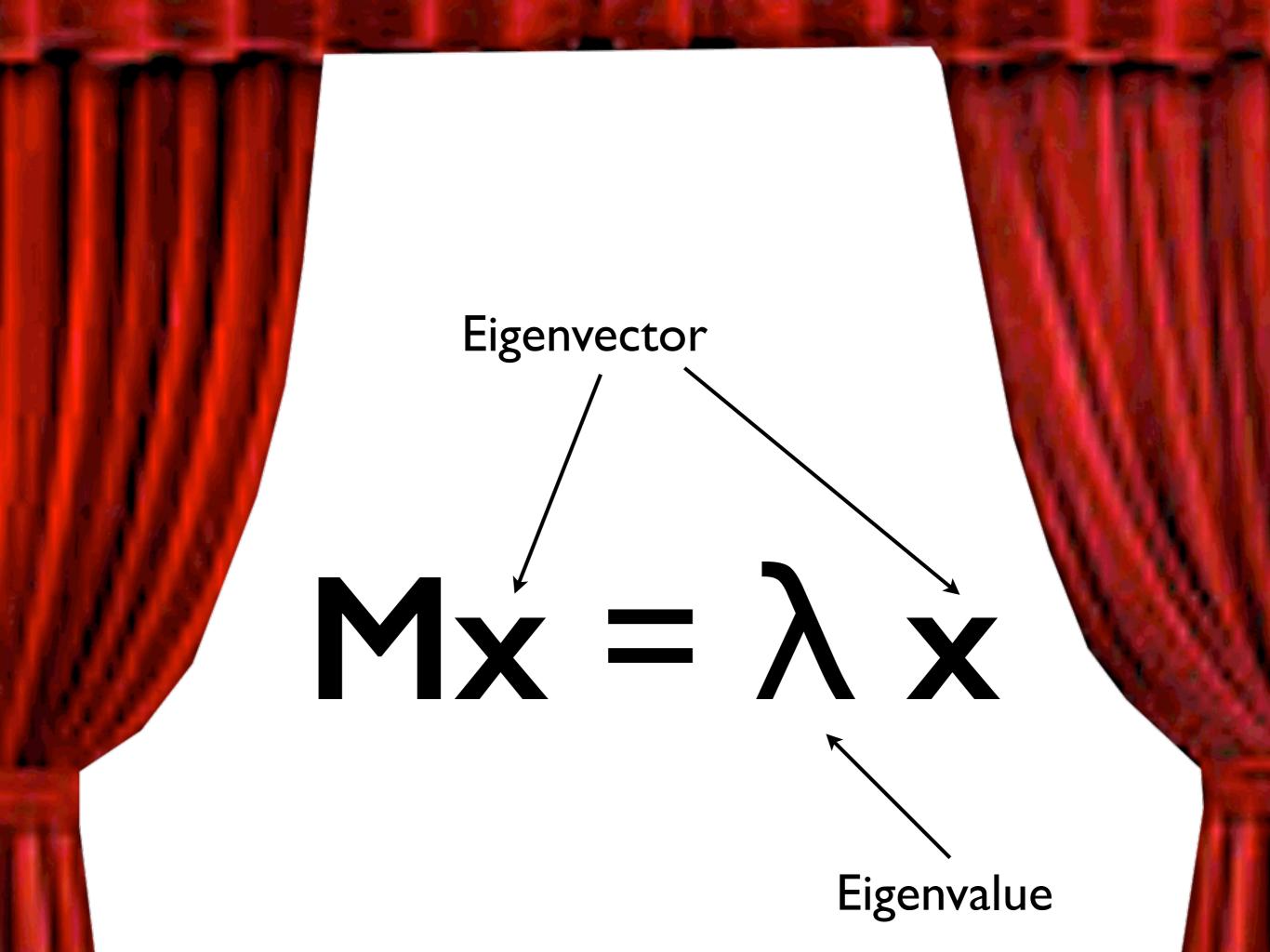
- (x,a) and (y,b) are "intrinsic properties" of
 M that tell us how to transform any vector
- Easy to see what happens if an eigenvalue dominates the others
- Intuition for why small eigenvalue means close to rank deficiency



need huge input to create output along weaker eigenvectors

Mz = ax + 2*by

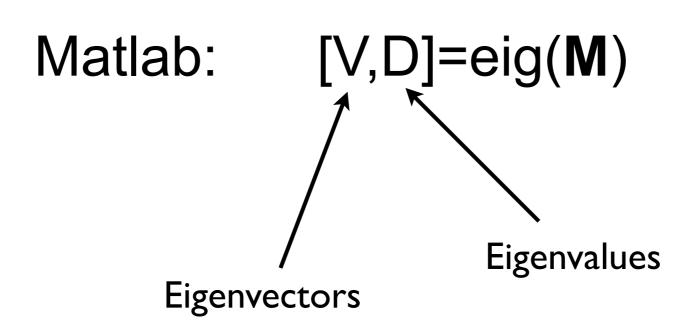
a=2, b=0.0001



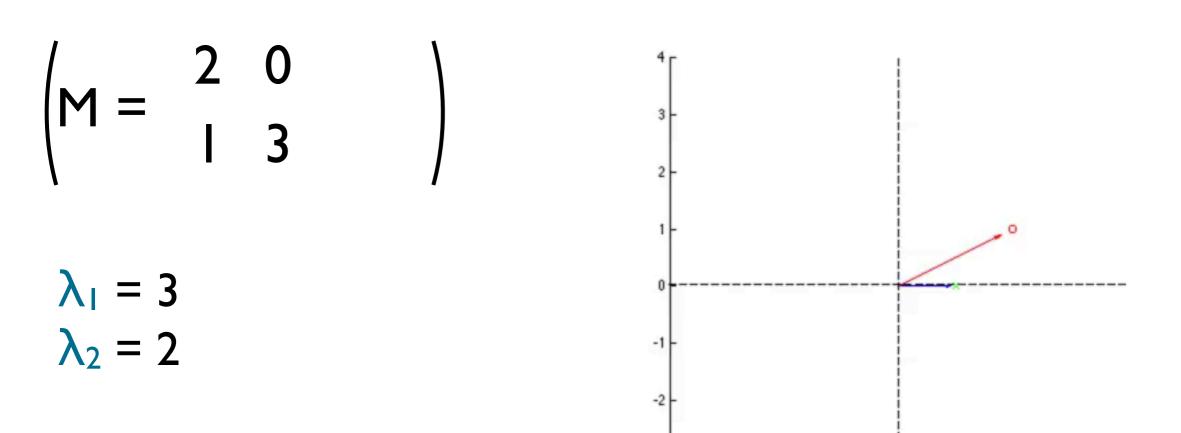
Special vectors

• $Mx = \lambda x$ This means M is a square matrix

How do we find x?



Examples in 2D Positive definite matrix



-3

44

-3

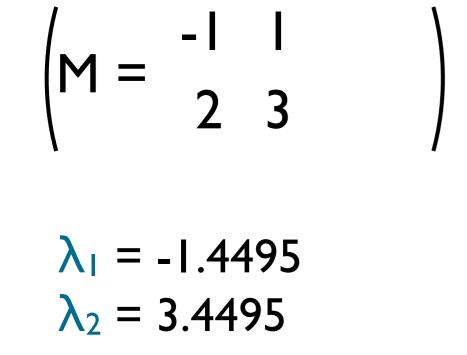
-2

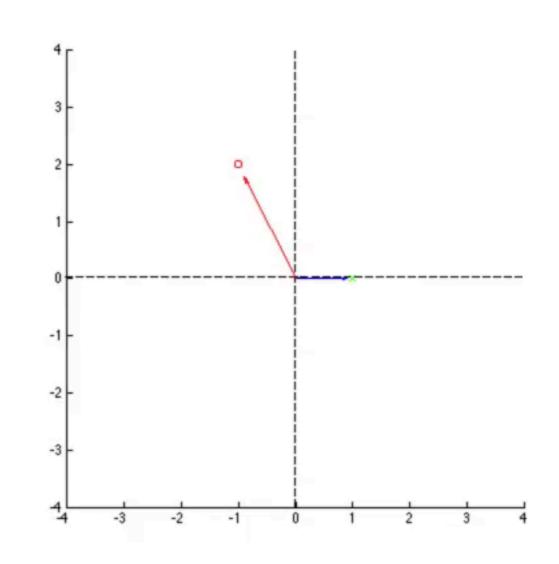
-1

0

2

Examples in 2D Negative eigenvalue

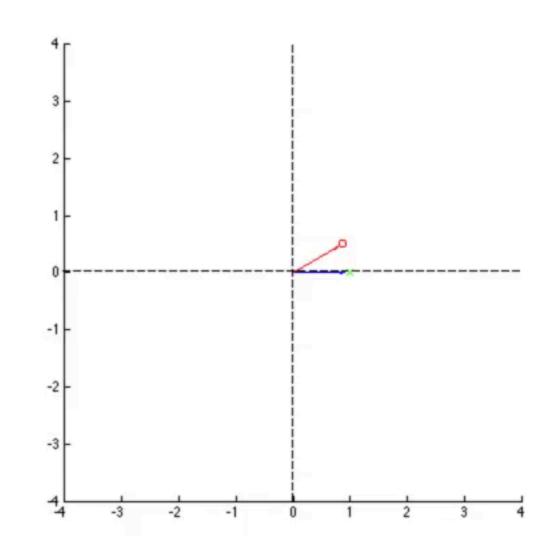




Examples in 2D Rotation matrix

$$\begin{pmatrix} M = \\ 0.866 & -0.5 \\ 0.5 & 0.866 \end{pmatrix}$$

 $\lambda_1 = ??? \\ \lambda_2 = ???$



Examples in 2D Rank deficient matrix

-3

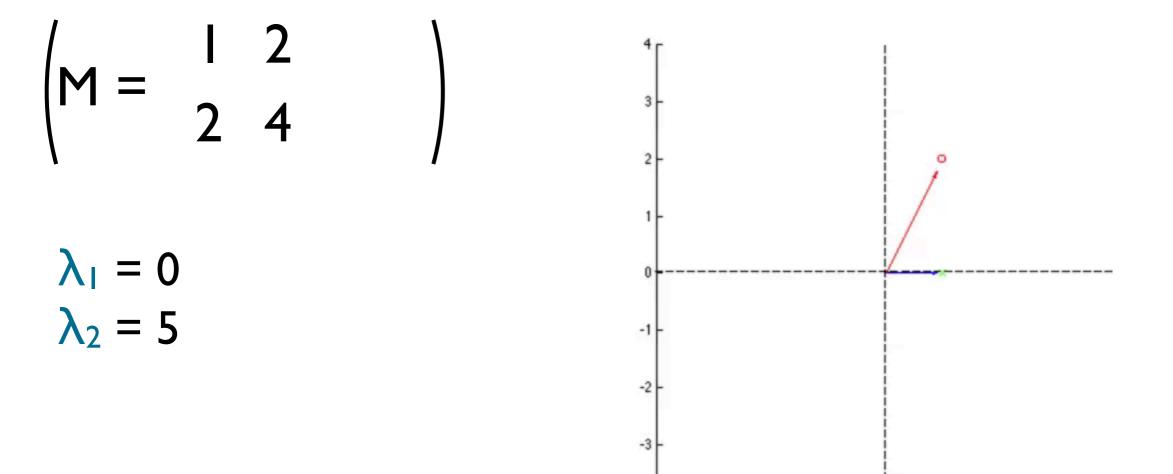
-2

-1

0

2

3



Examples in 2D Symmetric matrix

-3

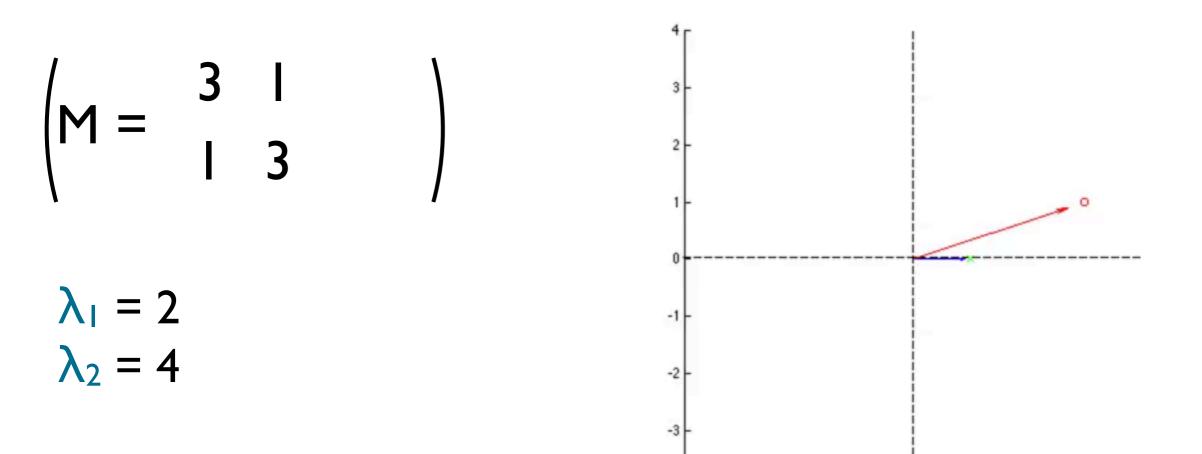
-2

-1

0

2

3



Symmetric matrices examples

Covariance matrix Correlation matrix MM^T and M^TM for any <u>rectangular</u> matrix M

Why is this interesting?

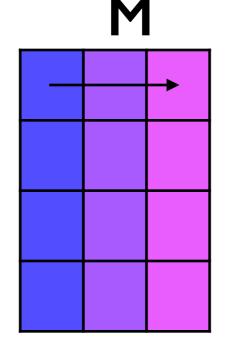
 We can generalise eigenvectors/values to rectangular matrices (by looking at M^TM or MM^T)

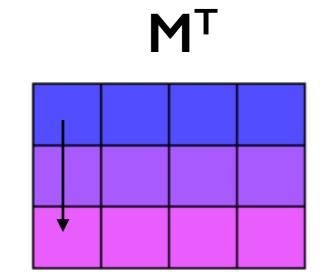
what is this for?

- Approximate rank
- Approximate matrix

Rank and transpose

Remember: the rank of a matrix is the dimension of the output sub-space





theorem

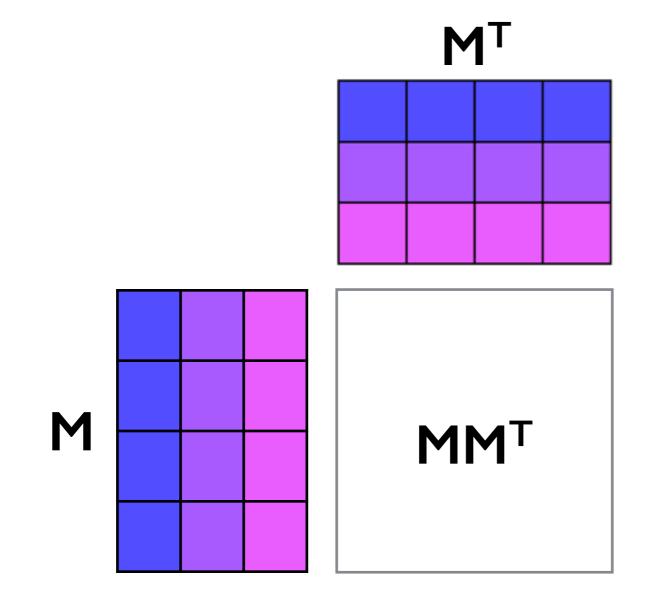
• rank(M) = rank(M^T) = rank(MM^T) = rank(M^TM)

Approximate the rank

I can calculate the eigenvalues of $\mathbf{M}\mathbf{M}^{\mathsf{T}}$ (always)

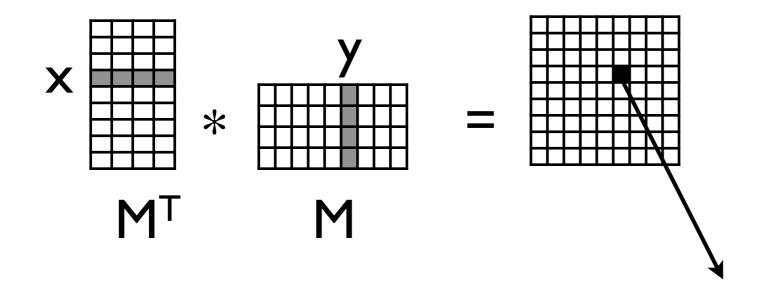
Let's say I find them to be 1.5, 2.0, 0.0001, 0

Then the approximate rank of M is 2



Approximate a matrix

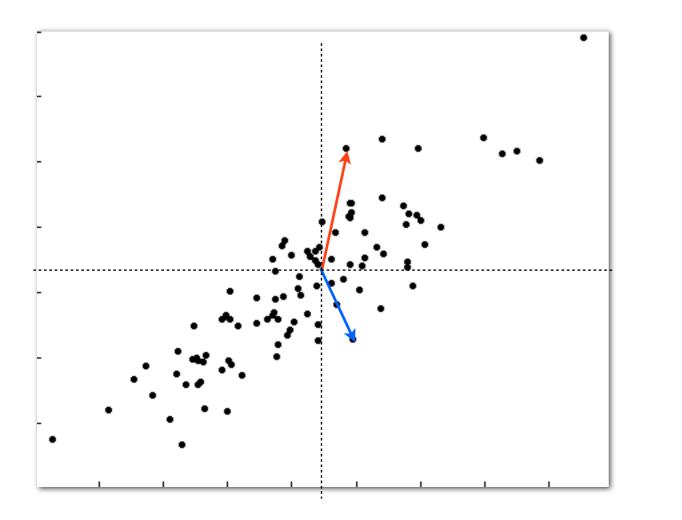
When the columns of M are demeaned, M^TM is the <u>covariance</u>

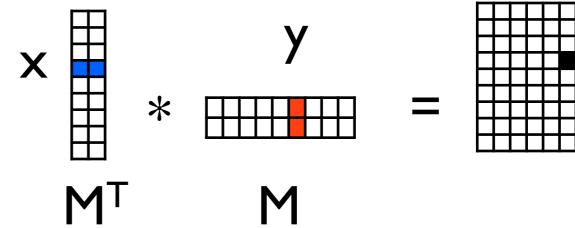


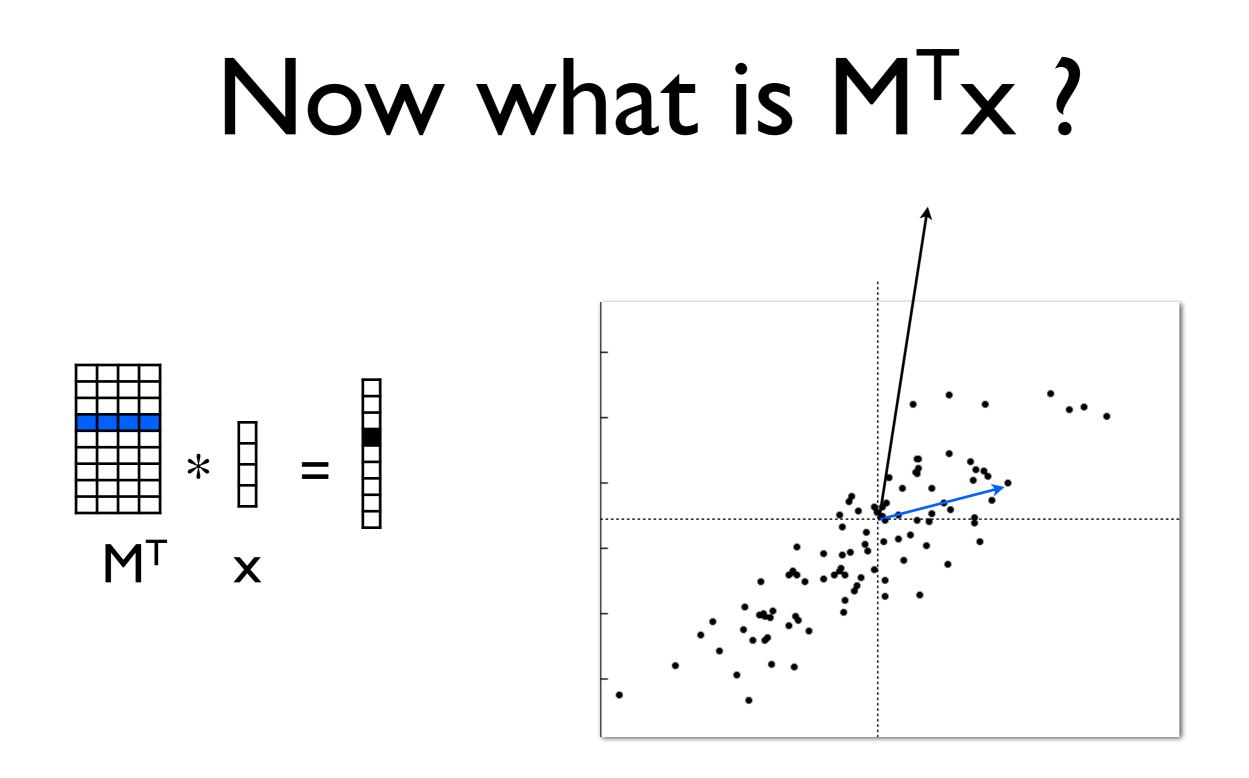
Sum{ $(x_i-mean(x)) . (y_i-mean(y))$ }

data

 $\mathbf{M} = \begin{bmatrix} 1.3401 & 2.1599 & -0.4286 & 1.5453 & 1.2016 & 0.1729 & 0.7258 & 1.2167 & 3.2632 & 2.7515 \\ 2.9208 & 3.0004 & 0.2012 & 2.3979 & 2.4349 & 0.5834 & 1.9231 & 2.7030 & 5.9159 & 4.1647 & \cdots \end{bmatrix}$







We want an x that "looks like" most of the data points

i.e. maximise $|M^Tx|$

(with |x|=1 for example, otherwise take |x|=infinity!)

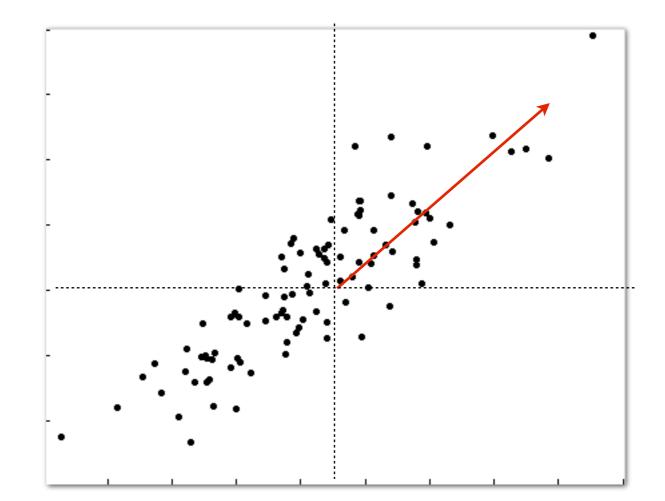
Some maths

$\mathbf{x}^{\mathsf{T}}\mathbf{M}\mathbf{M}^{\mathsf{T}}\mathbf{x} = (\mathbf{M}^{\mathsf{T}}\mathbf{x})^{\mathsf{T}}(\mathbf{M}^{\mathsf{T}}\mathbf{x}) = |\mathbf{M}^{\mathsf{T}}\mathbf{x}|^{2}$

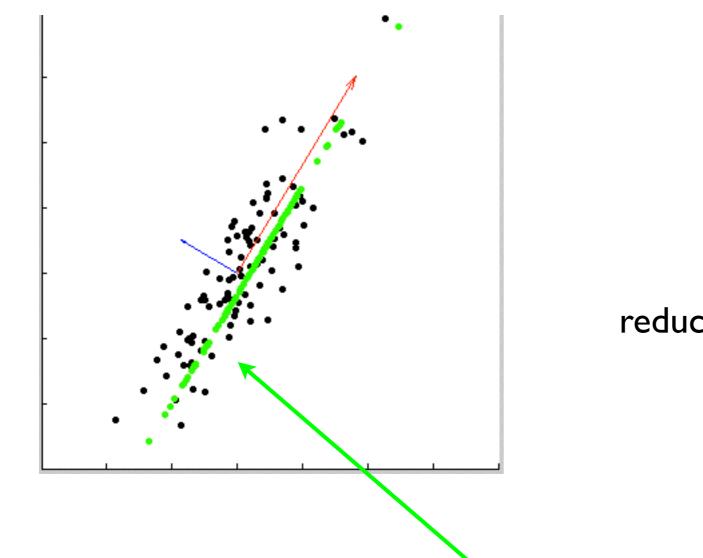
max

max

$\mathsf{M}\mathsf{M}^{\mathsf{T}}$ is symmetric! Max is along first eigenvector!



Principal component analysis



reduced data = M_V

reduced data in original space = Mvv^T

Data projected onto first principal component

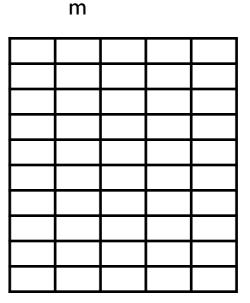
Principal component analysis

Identifying directions of large variance in data

. dimensionality reduction. denoising. finding patterns

data
$$\rightarrow$$

n



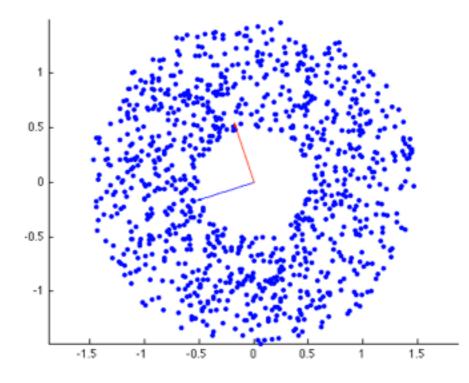
Assumptions in PCA

- The data is a linear combination of "interesting" components
- Variance is a good (sufficient?) feature
- Large variance is "interesting"

Assumptions in PCA

- The data is a linear combination of "interesting" components
- Variance is a good (sufficient?) feature
- Large variance is "interesting"

Alternatives: Kernel PCA, MDS,Laplacian eigenmaps, etc.

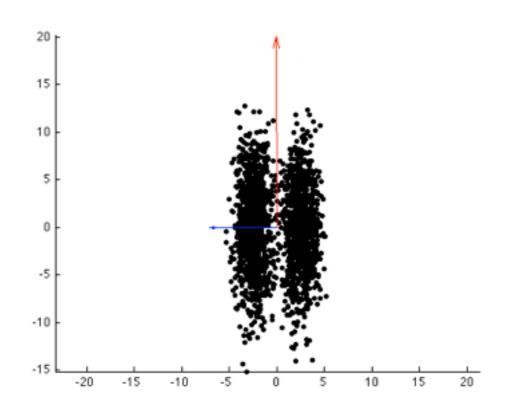


Assumptions in PCA

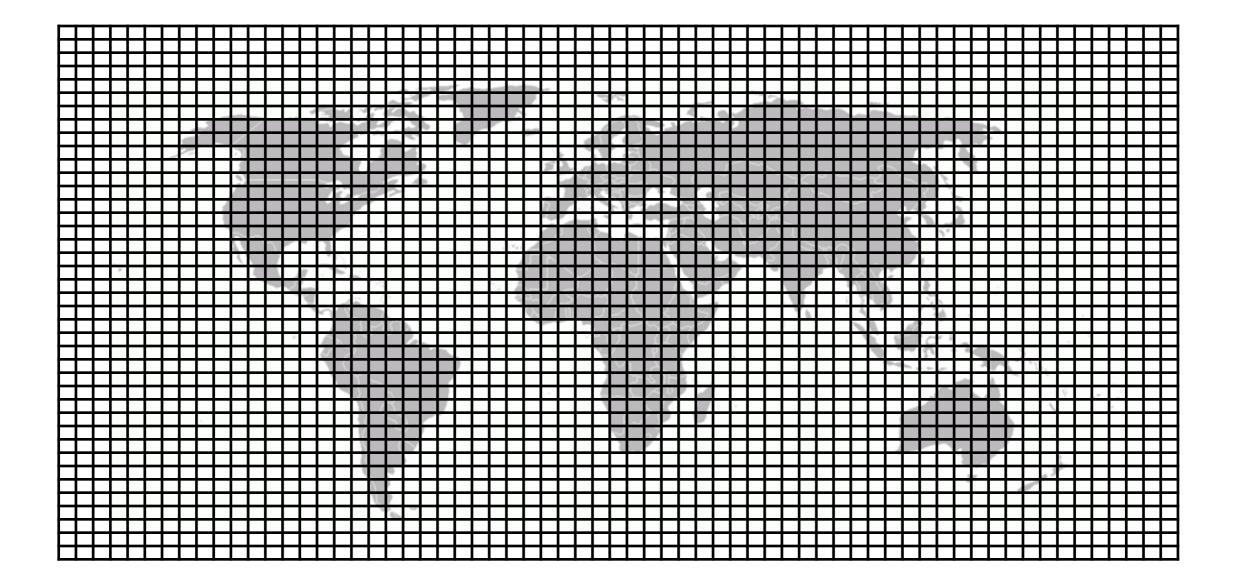
- The data is a linear combination of "interesting" components
- Variance is a good (sufficient?) feature

(Alternative: LDA)

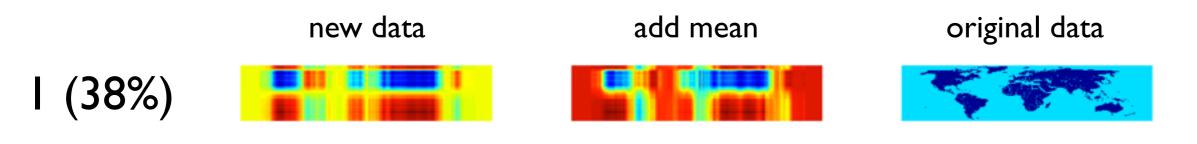
• Large variance is "interesting"



Example PCA of the world



Example PCA of the world



🖄 🛛 + 🕝 www.fmrib.ox.ac.uk/~saad/ONBI/gIm_practical.html

ONBI - GLM Practical. 2014/15

Practical Overview

This practical requires Matlab. Go through the page and execute the listed commands in the Matlab command window (you can copy-paste). Don't click on the "answers" links until you have thought hard about the question. Raise your hand should you need any help.

Contents:

- General Linar Model
 Fitting the General Linar Model to some data
- Principal Component Analysis Doing PCA on some data

Simple GLM

Let's start simple. Open matlab, and generate noisy data y using a linear model with one regressor x and an intercept. I.e. y=a+b*x

```
x = (1:20)';
intercept = -10;
slope = 2.5;
y = intercept + slope*x;
y = y + 10*randn(size(y)); % add some noise
```

Now plot the data against x:

```
figure
plot(x,y,'.');
xlabel('x');
ylabel('y');
```

Let's compare fitting a linear model with and without the intercept. First, set up two design matrices:

M1 = [x]; % w/o intercept
M2 = [ones(size(x)) x]; % w/ intercept

C Reader

0

That's all folks.