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0.4613
0.8502
-0.3777
0.5587
0.3956

-0.0923

1.0000

The GLM

y = M*x

There is a linear relationship between M and y

find x?

-1.3077

Simultaneous equations

1.0000 x1 + 0.5377 x2= 0.4613
1.0000 x1 + 1.8339 x2= 0.8502
1.0000 x1 +-2.2588 x2= -0.3777
1.0000 x1 + 0.8622 x2= 0.5587
1.0000 x1 +0.3188 x2= 0.3956
1.0000 x1 + -1.3077 x2= -0.0923



X

Examples

FMRI Time series
from one voxel

“regressors”
(e.9.: the task)

PEs
(parawmeter estimates)

y = M*x

SOMLE VAEASUYE
ACYross subjects
from one voxel

“regressors”
(e.9.: group membership)

PEs
(paraweter estimates)

Behavioural scores
ACYoSS Subjects

Age, #Years at school

PEs
(parawmeter estimates)



The GLM

p
y = M*x

There is a linear relationship between M and y

_ find x?

colution: X = pinv(M)*y

(the actuwal watlab command)

what s the psewdo-tnverse pinv ?



MUSt ﬁnd the beSt (X,?) SUCh that V =M*X (we can’t get out of M space)
y is the projection of y onto the ‘M space’

x are the coordinates of y in the ‘M space’
pinv(M) s used to project y onto the ‘M space’

This section Ls about the ‘M space’



In order to understand the ‘M space’, we
need to talk about these concepts:

® vectors, matrices
® dimension, independence

® sub-space, rank



definitions

® Vectors and matrices are finite collections of “numbers”
® Vectors are columns of numbers

® Matrices are rectangles/squares of numbers

X| X1 | Xi2 | X13
X2 X21 | X22 | X23
X3 X31 | X32 | X33
X4 X4| | X42 | X43
X5 X51 | X52 | X53




vectors

x| vector 1n a 1-dimensional space

X

x| vector 1n a 3-dimensional space

X3

X

X2

X3

vector 1n d-dimensional space

Xd-2

Xd-1

Xd




vectors

Adding vectors
. A a+b
add element-wise a

MM |

Scaling of vectors
multiply element-wise

0 e A e - 2h

2 23X 4
cbh=2x% /b'/

1] 2% ] |2

Linear combinations of vectors

c =g.a+hb

a, b and ¢ 1n the same d-dimensional space



vectors

About d-dimensional vectors

The “arrow” picture is also useful in d-dimensions, as any vector is in
effect one-dimensional.

X|

X2

X3

Xd-2

Xd-1

Xd




vectors

Linear combinations of vector

c =g.a+hb
) ¢ X
€2 X2
X1
€1
X=a*eq1+b*ez X=a*x1+b*x2 ?
any 2D vector is a linear what about a linear combination

combination of e| and ez of any 2 vectors!

X2

X1

X=a*x1+b*x2 ?

what if the two vectors are co-
linear?



“spanning”’

spanning means covering using linear combinations

E.g.. z=a*x+b*y

space covered by z for all a and b is the space that x and y span

* x and y span a 2D space



“spanning”’

these two vectors span 2 dimensions

)
can they span 3! these two vectors

span | dimension

vectors can span a “‘sub-space”

dimensions of the sub-space relates to “linear independence”



linear independence

can we write x=a.y !

y 4

can we write x=a.y+bz !

the vectors x| X2 X3 ... Xn are linearly independent if
none of them is a linear combination of the others



In higher dimensions

| e these two vectors

L i are not linearly independent
2 4 _

2| |4 (X2=2%X])

09298 1.1921 1.0205 -2.4863 0.0799 0.8577
what about these! 02398 -1.6118 08617 0.5812 -09485 -0.6912

how many“linearly independent” -0.6904 -0.0245 0.0012 -2.1924 04115 0.4494
vectors? -0.6516 -1.9488 -0.0708 -2.3193 0.6770 0.1006

X| X2 X3 X4 X5 X6

hard to tell, but there
can’t be more than 4



Theorem

The number of lwdepewdewt
vectors Ls smaller thaw the
dimension of the space

2D example:




Theorem

Given a collection of vectors, the space of all Linear
combinations has dimension equal to the number
of Lnearly wndependent vectors

This space Ls called a “sub-space”

2D example: x

(dimension of sub-space spanneo by {x,y} ls 1)




Matrices



Matrices

Matrices, what are they?

A matrix is a rectangular arrangement of values and is usually denoted by a
BOLD UPPER CASE letter, e.g.

"3 o

A = Is an example of a 2-by-2 matrix

and u _

B = Is an example of a 2-by-3 matrix




Matrices

Multiplying a matrix by a vector
6dimensions — 4dimensions

6 columns
E ] E W
4 rows % Xi —
Input Output

(6D) (4D)



Matrices

Multiplying a matrix by a vector
6dimensions — 4dimensions

.

Input Output

6 columns

T

4 rows




Matrices

Multiplying a matrix by a vector
6dimensions — 4dimensions

6 columns

4 rows H

Input Output



Matrices

Multiplying a matrix by a vector
6dimensions — 4dimensions

6 columns

4 rows >k

Input Output



definitions

Matrix multiplication as linear combinations of vectors
Let

A = :[a1 az]and b=

then

l.e. the vector Ab is a linear combination of the vectors constituting the
columns of A, i.e. it lies in the “column space” of A.

Ab=ba, +b,a, =b, +b,




what does this imply?

The output is a linear combination of the columns

The output sub-space is the space spanned by the columns
The dimension of the output sub-space is smaller or equal
to the number of columns

3 columns

h ||||||||||||| | |||| ::

Input Output




rank

The rank of a matrix is the number of independent
columns

Full rank means equal to the maximum possible

Otherwise it is said to be rank deficient




M*pinv(M) is the projector on the ‘M space’
x are the coordinates of Y in the ‘M space’



M*pinv(M) is the projector on the ‘M space’
x are the coordinates of Y in the ‘M space’

x = pinv(M) *y
y = M*x = M*pinv(M)*y — I

)
projector




\s
g

mz
Y

‘M space’

x are the coordinates of V in the space spanned by the
columns of M

x tells us “how much” of each column we need to
approximate y

the best approximation we can get is the projection onto the
‘M space’

we cannot get closer (out of ‘M space’) because that is what
the columns of M span

But if y is already in M-space, we get a perfect fit



End of part one

® The columns of the design matrix span the
space “available” from the regressors (M-space)

® The pseudo-inverse finds the best vector of the
M-space

® Next: Eigen-values/Eigen-vectors



Part two.

® Figenvectors and eigenvalues

e PCA



y=MXx

output input
linear combination of columns of M coefficients of the linear combination

0.4613 1.0000 0.5377
0.8502 1.0000 1.8339 _
-0.3777 1.0000 -2.2588
0.5587| = | 1.0000 0.8622 3
0.3956 1.0000 0.3188 0.3

-0.0923 1.0000 -1.3077

y M %



Special vectors

. 4 Z = x+2*y
Mz = Mx+2*My
X

. Mx~Fax
If x and y are such that: =,

Then: Mz = ax+2*by

Z Z Z
Mz )4 )4
(7
-7 X Mz X X
&£

a=2, b=1 a=2, b=0 a=-1, b=2



Special vectors

® (x,a) and (y,b) are “intrinsic properties” of
M that tell us how to transform any vector

® Easy to see what happens if an eigenvalue
dominates the others

® |ntuition for why small eigenvalue means
close to rank deficiency

y 4

4 )
need huge Lnput to create
output along weaker
Mz x v 0
eLgenvectors

Mz = ax+2*by a=2, b=0.0001






Special vectors

® Mx= Ax This means M is a square matrix

How do we find x?



Matlab:  [V,D]=eig(M)

/ Eigenvalues

Eigenvectors



Examples in 2D

Positive definite matrix

llllllll

4
4 -3 -2 -1 0 1 2 3 4




Examples in 2D

Negative eigenvalue

f -] \

M —

| 2 3 |

A = -1.4495 N
A2 = 3.4495 af |




Examples in 2D

Rotation matrix

(. 0866 05
~ 05 0.866

\

A =222 S - i —
Ay =102 '




Examples in 2D

Rank deficient matrix

llllllll

4 -3 -2 -1 0 1 2 3 4




Examples in 2D

Symmetric matrix

llllllll

4 -3 -2 -1 0 1 2 3 4




Symmetric matrices

examples

Covariance matrix
Correlation matrix

MMT and MM for any rectangular matrix M

M MT



Why is this interesting?

® We can generalise eigenvectors/values to
rectangular matrices (by looking at MM or MMT)



what is this for?

® Approximate rank

® Approximate matrix



Rank and transpose

Remember: the rank of a matrix is the dimension of the output
sub-space

M

MT

theorem

® rank(M) = rank(M") = rank(MMT') = rank(MTM)




Approximate the rank

| can calculate the eigenvalues of MM (always)
Let’s say | find them to be 1.5,2.0,0.0001, 0

Then the approximate rank of M is 2

MT

MMT




Approximate a matrix



When the columns of M are

demeaned, MM is the covariance

. T i
" \

Sum{ (xi-mean(x)) . (yi-mean(y)) }




data

M — I 1.3401  2.1599 -0.4286 1.5453 1.2016 0.1729 0.7258 1.2167 3.2632 2.7515 ]
2.9208 3.0004 0.2012 2.3979 24349 05834 1.9231 2.7030 59159 4.1647 °°°




Now what is M!x ?

"
TTT7]

[l
HEEEE EEN

We want an x that “looks like” most of the data points

i.e. maximise [M'x]

(with |x|=1 for example, otherwise take |x|=infinity!)




Some maths

x"MMTx = (M™x)T(MTx)=|MTx|?

Max Max

MMTis symmetric! Max is along first eigenvector!



“Principal” eigenvector of MM is
best 1D approx to the data

MMTy=Av




Principal component
analysis

“.;:ﬁf
".(”.
S : o: s _
o reduced data = Mv
0‘00‘0.0. ’ M S~
€.t reduced data in original space = Mvv'




Principal component
analysis

|dentifying directions of large variance in data

m

. dimensionality reduction
. denoising
.finding patterns

data —_— n




Assumptions in PCA

® [he datais a linear combination of
“interesting’ components

® Variance is a good (sufficient?) feature

® |arge variance is “interesting”



Assumptions in PCA

® [he datais a linear combination of
“interesting’ components

Alternatives: RERCAT d,.
Kernel PCA, MDS,Laplacian NI G A
% i,

L ?-‘.:.‘:,:.
eigenmaps, etc. T e



Assumptions in PCA

® Variance is a good (sufficient?) feature

® |arge variance is “interesting”

(Alternative: LDA)




Example
PCA of the world




Example
PCA of the world

new data add mean original data

138% & ‘um EL=T1 S
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Practical Overview

This practical requires Matlab. Go through the page and execute the listed commands in the Matlab command window (you can copy-paste).
Don't click on the "answers" links until you have thought hard about the question. Raise your hand should you need any help.

Contents:

e General Linar Model

Fitting the General Linar Model to some data
¢ Principal Component Analysis

Doing PCA on some data

Simple GLM

Let's start simple. Open matlab, and generate noisy data y using a linear model with one regressor x and an intercept. l.e. y=a+b*x

x = (1:20)";

intercept - -10;

slope = 2.5;

y = intercept + slope*x;

y = y + 10*randn(size(y)); % add some noise

Now plot the data against x:

figure
plot(x.y. ‘e '):
xlabel('x");
ylabel('y");

Let's compare fitting a linear model with and without the intercept. First, set up two design matrices:

Ml = [x]; % w/o intercept
M2 = [ones(size(x)) x]; % w/ intercept




That’s all folks.



