Signal and Image processing
A short intro
Saad Jbabdi, FMRIB Centre, Oxford

saad@fmrib.ox.ac.uk
When I say signal processing…

• Fourier series, Fourier transform, FFT

• A bit of image processing (but related to Fourier)

• A bit on image reconstruction (also related to Fourier)
Fourier Analysis
what’s it all about?

• Sines and cosines are building blocks

source: wikipedia
Why?

- Frequency content
Why?

- Cleaning

Fourier spectrum → inverse spectrum

Fourier spectrum → cut spectrum
Why?

• Frequency content
• Cleaning (filtering)
• Computational efficiency
• Also very useful in abstract maths (beyond signal processing)
Fourier Series

- Spectrum of the sinusoid:

\[y = \sin(2\pi t) \]

The ‘fundamental’ frequency

Signal domain ↔ Fourier domain
Frequency - 2D

• Define sinusoid going in x and y directions.

\[
\begin{align*}
\text{x frequency} &= 2 \\
\text{y frequency} &= 0 \\
\text{x frequency} &= 0 \\
\text{y frequency} &= 2
\end{align*}
\]
Fourier Series

Approximate periodic signals with sines and cosines
Fourier Series

- Keep going: \(y(t) = \sum a_n \sin(nf \times 2\pi t) + \sum b_n \cos(nf \times 2\pi t) \)
Fourier Analysis
what’s it all about?

• **Sines and cosines are building blocks**

 - **Fundamental Frequency**

 \[
 \frac{4 \sin \theta}{\pi}
 \]

 - **Harmonic**

 \[
 \frac{4 \sin 3\theta}{3\pi}
 \]

 - **Harmonic**

 \[
 \frac{4 \sin 5\theta}{5\pi}
 \]

 - **Harmonic**

 \[
 \frac{4 \sin 7\theta}{7\pi}
 \]

 - **Magnitude**

 - **Details increasing with frequency**
Fourier Transform

Approximate **non-periodic signals** with sines and cosines
Fourier Series --> Transforms

- Fourier Series good for periodic signals, what do we do if they are not?
 - Classic example: the top hat function
Fourier Series --> Transforms

- Try making it periodic over a certain period:
Fourier Series --> Transforms

- Make the spacing larger, so that there is a larger space in which only the top hat appears:
Fourier Series --> Transforms

- In the limit (T = infinity) we get a smooth spectrum:
Fourier Transform

- Fourier series was a sum at specific frequencies:
 \[y(t) = \sum_{n} a_n \sin(nf \times 2\pi t) + \sum_{n} b_n \cos(nf \times 2\pi t) \]

- Fourier transform is a sum over all frequencies:
 \[y(t) = \int_{-\infty}^{\infty} A(f) e^{j2\pi ft} df \]

 - Note: this formula is usually called the inverse FT.

 Negative frequencies
 Sine/Cosine (compact notation)
 Frequency
Fourier Transform

• To find the frequency spectrum we need to do an integral:

\[A(f) = \int_{-\infty}^{\infty} y(t) e^{-j2\pi f t} \, dt \]

Basically: at frequency \(f \), how much of \(\sin(f \times 2\pi t) \) do I need?

• In practice we get computers do deal with this using the Fast Fourier Transform (FFT).
Fourier transform
 Mathematical operation
 Continuous

Fast Fourier Transform
 Algorithm
 Discrete
Fourier Transform

- Examples:

 ‘White’ noise

![FFT Result]

Ideally flat - all frequencies
Fourier Transform - 1D

• Examples:
 Piano note

FFT Result
Fourier transform
Power spectrum lacks phase information
Fourier transform

\[A(f) = \int_{-\infty}^{\infty} y(t) e^{-j2\pi ft} dt \]

Complex numbers easier to manipulate than sine and cosine functions

Information on phase and magnitude
Magnitude, Phase

What? Where?

FFT

Same magnitude
Different phases
Fourier Transform - 2D

- 2D signals, i.e. images have 2D Fourier transforms
- We now have x and y frequencies:

![Diagram showing 2D frequency space with low and high frequencies in x and y dimensions.]
Fourier Transform - 2D

- Sinusoid in x direction
Fourier Transform - 2D

- Sinusoid in x plus sinusoid in y direction
Fourier Transform - 2D

- Single frequency in all directions
Fourier Transform - 2D

- Examples:
- Spectrum is ‘bright’ in the centre.
- Detail involves high frequency.
- Spectrum is symmetric.

http://www.cs.unm.edu/~brayer/vision/fourier.html
What kind of image would we get if we mix the phase and magnitude from these?

Image 1

Image 2

Courtesy of JM Brady
Magnitude \textbf{What?}

Phase \textbf{Where?}

FFT \quad \text{Same magnitude}

\quad Different phases
Filtering
Filtering - 1D

- In Fourier signals are a mixture of different frequency components.
- Often we want some components and not others.
Filtering - 1D

- I want to get rid of *high frequency noise* component.
- **Low Pass** filter - throw away high frequencies

![Signal and Spectrum Diagram](image-url)
Filtering - 1D

- I want to get rid of low frequency noise/drift.
- **High Pass** filter - throw away low frequencies.

![Signal](image1.png)

![Spectrum](image2.png)
Filtering - 1D

- I want to get rid of that annoying component at \(\text{[pick a frequency]}\) (e.g. mains noise).
- **Band Stop** filter - let everything through except...

![Signal](image1.png)

![Spectrum](image2.png)
Filtering - 1D

- I want to get rid of all this other stuff that is not my signal (not always this simple!)
- **Band Pass** filter - get rid of everything but...
Filtering - 2D

- Same principles as in 1D.
- **Low Pass**
- Remove high frequencies.
- Loose detail.

http://www.cs.unm.edu/~brayer/vision/fourier.html
Sampling, aliasing

--> details in the practical
Sampling in real space is like repeating in Fourier space and vice versa.
Time-frequency analysis

--> details in the practical
Time-frequency

- Three different signals - same frequency spectrum.
Time-frequency

- Need a ‘dynamic’ time-frequency representation.
Image reconstruction

—> details in the practical
Radon transform (X-ray CT)
Magnetic Resonance Imaging

Object of interest

Measurement (Fourier space)
www.fmrib.ox.ac.uk/~saad/GP/fourier.html

Prac Maths - Signal and Image Processing Practical

Overview
This practical requires Matlab. Go through the instructions and execute the listed commands in a Matlab command window (you can copy-paste). Don't click on the "answers" links until you have thought hard about the questions. Raise your hand if you need help, but perhaps try first the "help" command in Matlab if you are unsure about Matlab syntax issues.

Contents:
- Fourier analysis
 Learn basics of FFT in 1D (signals) and 2D (images)
- Filtering
 Learn to implement linear filters using convolution
- Image reconstruction
 Fourier/Radon transforms and image reconstruction

Fourier analysis
To start with, let us create some simple 1D signals and examine their Fourier transforms. In this first example, we will check the frequency content of a simple periodic signal.

Generate a cosine signal with given magnitude, frequency, sampling rate, and duration:

```
mag = 2; % magnitude (arbitrary units)
freq = 5; % frequency in Hz
samp = 100; % sampling rate in Hz

t = 0:1/samp:1; % time (1s of data)
t = t(length(t)); % remove last time point
N = length(t); % store the number of time points
x = mag*cos(2*pi*freq*t); % the signal equation
figure
plot(t,x,'.-');
```