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6.Reduction of computation times by two orders of magnitude 
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Computa�onal	Times	&	Speedup
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3. Design and implementation of parallel tractography algorithm 
To reduce divergences of threads, streamlines from different seeds can 
not be assigned to the same Thread Block (Group of threads).	

The parallel algorithm iterates over groups of streamlines. Some tasks 
are assigned to the CPU. GPU & CPU processes and Memory transfers 
are overlapped.	

The parallel algorithm reorganises dynamically the threads, in such a 
way that threads within same warp (group of 32 threads) access similar 
memory positions most of the time (to rely on efficient caching), and 
removes idle threads. 	

The complex tasks of a streamline are divided into simple CUDA kernels.  	
	

GPU kernels: calculate paths, check 
anatomical constraint masks & check 
connectivity between nodes.

Copy nodes visited by
streamlines: CPU->GPU

Update connectivity matrix (CPU)

Time

Probabilistic Tractography on GPUs

MxN streamlines (SLs) are launched from M seeds. 
Each SL is assigned to a thread.
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2. Parallel tractography algorithm: challenges and limitations 
The algorithm implements probabilistic streamline tractography  using 
the CUDA parallel programming model [5] and generates spatial 
distributions of streamlines from seed points. Thousands of streamlines 
can be computed in parallel on a single GPU.	
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•  Too heavy Tasks: each streamline 
needs to compute complex tasks, 
including a segment-triangle 
intersection algorithm [6]. Light-
weight threads are more suitable 
on GPUs.	

Parallelising probabilistic tractography algorithms does not 
inherently fulfil these requirements.	

•  Limitation on the number of 
streamlines that can be 
computed in parallel: high 
memory demands. All data need 
to be in the device memories for 
online calculations.	

•  A lot of memory transfers: need to copy 
results from GPU to CPU.	

•  Divergent behaviour of the threads: 	
   different paths and different number of	
  iterations. Irregular memory accesses paYerns.	
	

Parallelisability requirements for obtaining a good performance on GPUs:	
1. Problem must be divisible into thousands of simple sub-problems.	
2. Data Level Parallelism (DLP): Same instructions over multiple data sets.	
3. Regular memory access paDerns. Threads accessing continuous memory 

positions.	
4. Semi-independence of threads. LiDle communication/synchronisation.	

STEP N

STEP N+1

STEP N+2 STEP N+3

Segment-Triangle 
Intersection

1. Select Sample & Jump

2. Check Imposed 
Anatomical Constraints
(SEVERAL)

3.  Update Connectivity

 GPU implementation is not straightforward: 	

1. Introduction: A GPU based tractography toolbox that reduces computation times by two orders of magnitude  
Tractography methods have great potential for mapping brain connections, however, they can be very time-consuming and restrict the potential of 
the technology. This is particularly true when probabilistic streamline tractography is used for:	
•   Processing databases that comprise hundreds [1,2] to tens of thousands of subjects [3], and/or 	
•   Performing whole-brain exploratory analysis and building connectomes [4]	

We present a parallel algorithm that performs probabilistic streamline tractography using Graphics Processing Units (GPUs) and reduces 
computation times by two orders of magnitude. The toolbox will be publically available in the next version of FSL.	

7. Conclusions 1. We have developed a GPU based tractography 
toolbox.	

2. It will be publically available in the next version of FSL.	
3. It reduces computation times by two orders of magnitude.	
4. It includes new features: 3D surfaces for imposing anatomical 
constraints and generation of “dense” connectome matrices. 	

4. New features of the algorithm 
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B
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The option to add 
anatomical constraints as 
in [8]. For instance, allow 
streamlines to enter a 
subcortical region, 
propagate within it, but 
terminate upon exit.	

All the functionality of FSL’s 
respective CPU tractography tool [7].	

Low	Path	Probability High	Path	Probability

No	surface	Constraint

Surface	Constraint

Can handle both volume and surface (NIFTI and GIFTI) files. The 
toolbox offers novel flexibility and functionality features:	
An option to use 3D surfaces (GIFTI files) for imposing 
more realistic anatomical constraints (for instance using 
the WM/GM boundary surface as a termination mask). 	

The possibility to generate “dense” connectome 	
matrices, either seeding from WM or from WM/GM 	
boundary: generation of tens of millions of streamlines 
between tens of thousands of “grayordinate” locations [9].	

5. Comparing the GPU to the CPU implementation 
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Reconstruction of major tracts [10] using dMRI datasets from the HCP [1] 
and generation of dense connectome matrix with CPU and GPU. 	

Given the stochastic nature of the 
process, we compare the mean of 
the correlation coefficients (and 
their variability) of the results 
from GPU and several CPU runs, 
with those from only several CPU  	
runs. Very high CPU-GPU correlations (>0.99) are obtained for all the 
reconstructed tracts and the generated dense connectome matrices.	


