

Laminar characteristics of gyrencephaly using high resolution DTI *in vivo* at 7T

Michiel Kleinnijenhuis 1,2,3

Donders Institute

for Brain, Cognition and Behaviour

Tim van Mourik ¹

David Norris 1,4,5

Dirk Ruiter²

Anne-Marie van Cappellen van Walsum ^{2,1,5} Markus Barth ^{1,4,6} 10 June 2014

¹ Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
 ² Department of Anatomy, Radboudumc, Nijmegen, Netherlands
 ³ Oxford Centre for Functional MRI of the Brain, Oxford, United Kingdom
 ⁴ Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany
 ⁵ MIRA Institute, University of Twente, Enschede, Netherlands
 ⁶The University of Queensland, Centre for Advanced Imaging, Brisbane, Australia

- 1. Laminar organization
- 2. Cortical curvature

layer thickness variation

- How does this relate to fibre architecture?
- *

Fig. 1. Sketch from Bok (1929) of a cortical cross section depicting six cytoarchitectonic layers. Principal dendrites divide each layer into segments. The volume fraction of a segment is constant across the whole layer. This is possible because the thickness of the layer changes to compensate the curvature. At locations of high curvature a layer is relatively thick, at locations of low curvature it is comparably thin.

- 1. Laminar organization
- 2. Cortical curvature

layer thickness variation

- How does this relate to fibre architecture?
- *

Fig. 1. Sketch from Bok (1929) of a cortical cross section depicting six cytoarchitectonic layers. Principal dendrites divide each layer into segments. The volume fraction of a segment is constant across the whole layer. This is possible because the thickness of the layer changes to compensate the curvature. At locations of high curvature a layer is relatively thick, at locations of low curvature it is comparably thin.

- 1. Laminar organization
- 2. Cortical curvature

layer thickness variation

- How does this relate to fibre architecture?
- *

Fig. 1. Sketch from Bok (1929) of a cortical cross section depicting six cytoarchitectonic layers. Principal dendrites divide each layer into segments. The volume fraction of a segment is constant across the whole layer. This is possible because the thickness of the layer changes to compensate the curvature. At locations of high curvature a layer is relatively thick, at locations of low curvature it is comparably thin.

1. Laminar organization
 2. Cortical curvature

layer thickness variation

- How does this relate to fibre architecture?
- *

Fig. 1. Sketch from Bok (1929) of a cortical cross section depicting six cytoarchitectonic layers. Principal dendrites divide each layer into segments. The volume fraction of a segment is constant across the whole layer. This is possible because the thickness of the layer changes to compensate the curvature. At locations of high curvature a layer is relatively thick, at locations of low curvature it is comparably thin.

Gyral fibres

- essential for progress in diffusion MRI:
 - structural connectomics
 - ★ cortical microstructure
- investigated with diffusion:
 - radial organisation¹

GM

- regional² and laminar^{3,4} variation
- fibre insertion patterns^{5,6,7}
- WM superficial WM (e.g. u-fibres)

Structure tensor analysis of Bodian stain⁵

1) McNab et al., NI 2009; 2) McNab et al., NI 2013; 3) Kleinnijenhuis et al., OHBM 2011; 4) Leuze et al., OHBM 2011; 5) Kleinnijenhuis et al., OHBM 2013; 6) Sotiropoulos et al., OHBM 2013; 7) Bastiani et al. OHBM 2013

Methods: MRI

- 5 healthy participants
- 7T DTI
 - ➡ RESOLVE* at 1mm³
 - → 61 directions at $b = 1000 \text{ s/mm}^2$

- sagittal slab centred on midline
- MP2RAGE for cortical surface reconstruction

* Porter et al. (2009) 'High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two- dimensional navigator-based reacquisition', Magnetic Resonance in Medicine, vol.62, pp. 468–475.

#3875

Methods: sampling

- 13 surfaces:
 - gm-wm, pial (FreeSurfer)
 - WM => 6 equi*distant* (1 cortical thickness)
 - GM => **5** equi*volume*¹ (curvature and thickness)
- maps of T1, FA, DT radiality² (Camino)
- 10 curvature bins
 - profiles with similar curvature averaged

#3875

Methods: sampling

- 13 surfaces:
 - gm-wm, pial (FreeSurfer)
 - WM => 6 equi*distant* (1 cortical thickness)
 - GM => **5** equi*volume*¹ (curvature and thickness)
- maps of T1, FA, DT radiality² (Camino)
- 10 curvature bins
 - profiles with similar curvature averaged

Methods: sampling

- 13 surfaces:
 - gm-wm, pial (FreeSurfer)
 - WM => 6 equidistant (1 cortical thickness)
 - GM => **5** equi*volume*¹ (curvature and thickness)
- maps of T1, FA, DT radiality² (Camino)
- 10 curvature bins
 - profiles with similar curvature averaged

Waehnert et al. (2013), 'Anatomically motivated modeling of cortical laminae', NeuroImage vol. 93(2), pp. 210-220.
 McNab et al. (2013), 'Surface based analysis of diffusion orientation for identifying architectonic domains in the in vivo human cortex', NeuroImage, vol.69, pp. 87–100

#38/5

Methods: sampling

#3875

- 13 surfaces:
 - gm-wm, pial (FreeSurfer)
 - WM => 6 equidistant (1 cortical thickness)
 - GM => 5 equivolume¹ (curvature and thickness)
- maps of T1, FA, DT radiality² (Camino)
- 10 curvature bins
 - profiles with similar curvature averaged

Methods: sampling

#3875

- 13 surfaces:
 - gm-wm, pial (FreeSurfer)
 - WM => 6 equi*distant* (1 cortical thickness)
 - GM => 5 equivolume¹ (curvature and thickness)
- maps of T1, FA, DT radiality² (Camino)
- 10 curvature bins
 - profiles with similar curvature averaged

individual subjects

• T1: GM-WM contrast laminar gradient

individual subjects

individual subjects

GM-WM contrast laminar gradient FA: WM: increase towards fundus

<u>Gyrus model</u> • T1: **GM-WM** contrast laminar gradient • FA: WM: increase towards fundus Radiality: crown: radial fundus: tangential

single-subject maps

• FA:

low on pial surface 0.1-0.2 in cortex low under crowns

• Radiality:

radial midcortex gm-3, but oblique in fundi

tangential under fundi

Discussion

- Histology, *ex vivo* & *in vivo* MRI:
 - peak radiality in crown (+)
 - tangential DTs in deep layers of the fundus (*)
- Tractography bias towards crown¹
 - result of the gyral fibre pattern
 - seen in macaque and human data
 - model / algorithm improvements

Van Essen et al. (2014)

[1] for a discussion: Van Essen et al. (2014), 'Mapping Connections in Humans and Non-Human Primates: Aspirations and Challenges for Diffusion Imaging', In: Johansen-Berg, H., Behrens, T.E.J. (Eds.), 'Diffusion MRI: From Quantitative Measurement to In-vivo Neuroanatomy', pp. 337–358.

VIP Brain Networks

E provincie
Gelderland

Ministerie van Economische Zaken

INSTITUTE FOR BIOMEDICAL TECHNOLOGY AND TECHNICAL MEDICINE

Thank you!

Lena Schäfer

Emil Nijhuis

Saad Jbabdi

Stam Sotiropoulos

Karla Miller

DCCN MR techniques

FMRIB Physics

Donders Institute for Brain, Cognition and Behaviour

Radboud Universiteit Nijmegen

