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Gennari and the inner cortical boundary. This relationship was then
used to remove the depth bias from laminar correlation matrices.

A third approachwas introduced by deVos et al. (2004). One of their
solutions uses isocontours from the Laplace equation and their orthog-
onal profiles to define areas. The profiles are then sampled at intervals
of equal areas instead of equal distances. De Vos' idea of equal areas is
an adaption of equal volumes onto two-dimensional sections and can
be traced to Bok'swork. However, none of the above approaches has ex-
plicitly modeled the volume-preserving criterion.

In this work, we present a novel stratification approach aimed at gen-
erating awell-adapted coordinate systemof the cortex according to Bok's
concept. Our method evolves a geometric deformable model (GDM)
(Sethian, 1999) to define a series of laminae of constant volume, based
on a local model which integrates the influence of curvature from both
cortical boundary surfaces. The laminae are then interpolated to give a
continuous stratification of depth values. From the well-adapted coordi-
nate system isocontours can be chosen to fit myelinated bands locally.
These isocontours are referred to in this study as computed laminae or
laminae. However, we are not able and are not intending to recompute
the anatomical layers. The main purpose of the well-adapted coordinate
system is to provide profiles that are anatomically meaningful to study
MR intensity patterns within cortical areas and their variation
across area boundaries. We validate the equi-volume model using
high-resolution ex-vivo and in-vivo MRI data. Compared with both
Laplace equipotentials and a simplified model that preserves lamina
thicknesses, the proposed equi-volume stratification provides a signifi-
cant improvement both in precision and accuracy.

Methods

Cortical stratification using level set methods and profile estimation

The input data for any cortical stratificationmethod is a segmenta-
tion of the white matter (WM)/gray matter (GM) boundary and the
GM/cerebrospinal fluid (CSF) boundary. In the following, we describe
how to obtain intracortical laminae from the reconstructed inner and
pial surfaces. At first, we compute the level set functions of the two
boundary surfaces. A level set function is a signed distance function. It
is zero on the boundary surface and has values that increase with the
distance from the boundary surface, being positive on one side and neg-
ative on the other side. We can evolve such a level set function φ and
thereby move the zero level set, i.e. the boundary surface. This move-
ment can be determined by local properties of the surface such as

curvature, global properties such as shape and position of the zero
level set and independent properties like an underlying force field
(Sethian, 1999). Here, we use the narrow band level set method to
evolve φ to a target level set surface φd at a certain cortical depth:

∂φ
∂t þ φ−φdð Þ⋅ ∇φj j ¼ !κ ∇φj j: ð1Þ

φ can either be the level set of the inner cortical surface that is evolved
outwards towards the level set of the outer pial surface or φ can be the
level set of the pial surface to construct an inward stratification. Which
of the two ways is more appropriate depends on the data and is
discussed in the experimental Post-mortem samples and In-vivo data
sections. The regularization term !κ ∇φj j keeps the evolved level sets
of the surfaces smooth and avoids shocks. Moreover the surfaces are
able to maintain the topology of the cortical boundaries if desired
(Han et al., 2003). Because the stratification surfaces are close to each
other, the computations are fast and memory efficient even at high
resolution. Implementation details follow the classical narrow band
algorithm with first order differences (Sethian, 1999).

In this work, the target level set is a parameterized weighted aver-
age of the level sets of the inner and pial cortical surfaces φin and φout.
The choice of the parameter ρ allows the target to be at any distance
between the two surfaces.

φd ¼ 1−ρð Þ⋅φin−ρ⋅φout ; ρ∈ 0;1½ &: ð2Þ

Varying ρ and hence φd, we can construct a set of level set surfaces
{φd}d = 1,…,N, stratifying the cortex. A lamina is the volume between
two neighboring surfaces.

Orthogonal profile curves can be easily generated based on the
level set representation. From any starting location x, we obtain the
projection onto the closest surface φd as:

xd ¼ x−φd xð Þ ∇φd xð Þ
∇φd xð Þ
!! !! ð3Þ

andwe can then project xd onto the next closest surface, until we have a
curved 3D profile that intersects all the stratifying surfaces. The classical
approach for constructing profiles is to follow the gradient of the strat-
ifying function. To construct Laplace profiles, one uses the Laplace solu-
tion to provide laminae. Compared with this classical approach, the use
of discrete laminae guarantees that the profiles are directly generated
and sampled in a regular fashion. The projection formula also prevents
the formation of unlikely profiles when the approximated stratifying
function gradient would introduce vortices in the classical approach.

Equi-volume model

The geometry of the intracortical laminae (constructed as described
in the Cortical stratification using level set methods and profile
estimation section) depends on the choice of ρ in Eq. (2). If ρ is chosen
to be constant, the resulting surface keeps a constant distance fraction
from the segmented boundaries. We call this the equidistant model.
Using the software described in the Software section, this equidistant
stratification has been used before by Trampel et al. (2012) for
lamina-specific fMRI. Khan et al. (2011) also used weighted averages
of the inner and pial surface level set functions to construct equidistant
intracortical level set surfaces and from these constructed Euclidean
depth profiles. Moreover, previously there have been other studies
that use different implementations of equidistant laminae or that sam-
ple profiles at equally spaced Euclidean cortical depths (Olman et al.,
2012; Polimeni et al., 2010b; Sereno et al., 2012).

However, Fig. 1 shows that the actual cortical layers do notmaintain
a constant distance from the inner and pial surfaces. Hence, the equi-
distant model is not appropriate. In order to build a stratification that

Fig. 1. Sketch from Bok (1929) of a cortical cross section depicting six cytoarchitectonic
layers. Principal dendrites divide each layer into segments. The volume fraction of a
segment is constant across the whole layer. This is possible because the thickness of
the layer changes to compensate the curvature. At locations of high curvature a layer
is relatively thick, at locations of low curvature it is comparably thin.
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Structure tensor analysis of Bodian stain5

Gyral fibres
• essential for progress in diffusion MRI: 

★ structural connectomics  

★ cortical microstructure  

• investigated with diffusion: 

- radial organisation1 

- regional2 and laminar3,4 variation 

- fibre insertion patterns5,6,7 

- superficial WM (e.g. u-fibres)

1) McNab et al., NI 2009; 2) McNab et al., NI 2013; 3) Kleinnijenhuis et al., OHBM 2011; 4) Leuze et al., OHBM 2011; 5) 
Kleinnijenhuis et al., OHBM 2013; 6) Sotiropoulos et al., OHBM 2013; 7) Bastiani et al. OHBM 2013

GM

WM



Methods: MRI
• 5 healthy participants 

• 7T DTI 

➡ RESOLVE* at 1mm3 

➡ 61 directions at b = 1000 s/mm2 

➡ sagittal slab centred on midline 

• MP2RAGE for cortical surface reconstruction
* Porter et al. (2009) 'High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel 
imaging and a two- dimensional navigator-based reacquisition', Magnetic Resonance in Medicine, vol.62, pp. 468–475.



Gennari and the inner cortical boundary. This relationship was then
used to remove the depth bias from laminar correlation matrices.

A third approachwas introduced by deVos et al. (2004). One of their
solutions uses isocontours from the Laplace equation and their orthog-
onal profiles to define areas. The profiles are then sampled at intervals
of equal areas instead of equal distances. De Vos' idea of equal areas is
an adaption of equal volumes onto two-dimensional sections and can
be traced to Bok'swork. However, none of the above approaches has ex-
plicitly modeled the volume-preserving criterion.

In this work, we present a novel stratification approach aimed at gen-
erating awell-adapted coordinate systemof the cortex according to Bok's
concept. Our method evolves a geometric deformable model (GDM)
(Sethian, 1999) to define a series of laminae of constant volume, based
on a local model which integrates the influence of curvature from both
cortical boundary surfaces. The laminae are then interpolated to give a
continuous stratification of depth values. From the well-adapted coordi-
nate system isocontours can be chosen to fit myelinated bands locally.
These isocontours are referred to in this study as computed laminae or
laminae. However, we are not able and are not intending to recompute
the anatomical layers. The main purpose of the well-adapted coordinate
system is to provide profiles that are anatomically meaningful to study
MR intensity patterns within cortical areas and their variation
across area boundaries. We validate the equi-volume model using
high-resolution ex-vivo and in-vivo MRI data. Compared with both
Laplace equipotentials and a simplified model that preserves lamina
thicknesses, the proposed equi-volume stratification provides a signifi-
cant improvement both in precision and accuracy.

Methods

Cortical stratification using level set methods and profile estimation

The input data for any cortical stratificationmethod is a segmenta-
tion of the white matter (WM)/gray matter (GM) boundary and the
GM/cerebrospinal fluid (CSF) boundary. In the following, we describe
how to obtain intracortical laminae from the reconstructed inner and
pial surfaces. At first, we compute the level set functions of the two
boundary surfaces. A level set function is a signed distance function. It
is zero on the boundary surface and has values that increase with the
distance from the boundary surface, being positive on one side and neg-
ative on the other side. We can evolve such a level set function φ and
thereby move the zero level set, i.e. the boundary surface. This move-
ment can be determined by local properties of the surface such as

curvature, global properties such as shape and position of the zero
level set and independent properties like an underlying force field
(Sethian, 1999). Here, we use the narrow band level set method to
evolve φ to a target level set surface φd at a certain cortical depth:

∂φ
∂t þ φ−φdð Þ⋅ ∇φj j ¼ !κ ∇φj j: ð1Þ

φ can either be the level set of the inner cortical surface that is evolved
outwards towards the level set of the outer pial surface or φ can be the
level set of the pial surface to construct an inward stratification. Which
of the two ways is more appropriate depends on the data and is
discussed in the experimental Post-mortem samples and In-vivo data
sections. The regularization term !κ ∇φj j keeps the evolved level sets
of the surfaces smooth and avoids shocks. Moreover the surfaces are
able to maintain the topology of the cortical boundaries if desired
(Han et al., 2003). Because the stratification surfaces are close to each
other, the computations are fast and memory efficient even at high
resolution. Implementation details follow the classical narrow band
algorithm with first order differences (Sethian, 1999).

In this work, the target level set is a parameterized weighted aver-
age of the level sets of the inner and pial cortical surfaces φin and φout.
The choice of the parameter ρ allows the target to be at any distance
between the two surfaces.

φd ¼ 1−ρð Þ⋅φin−ρ⋅φout ; ρ∈ 0;1½ &: ð2Þ

Varying ρ and hence φd, we can construct a set of level set surfaces
{φd}d = 1,…,N, stratifying the cortex. A lamina is the volume between
two neighboring surfaces.

Orthogonal profile curves can be easily generated based on the
level set representation. From any starting location x, we obtain the
projection onto the closest surface φd as:

xd ¼ x−φd xð Þ ∇φd xð Þ
∇φd xð Þ
!! !! ð3Þ

andwe can then project xd onto the next closest surface, until we have a
curved 3D profile that intersects all the stratifying surfaces. The classical
approach for constructing profiles is to follow the gradient of the strat-
ifying function. To construct Laplace profiles, one uses the Laplace solu-
tion to provide laminae. Compared with this classical approach, the use
of discrete laminae guarantees that the profiles are directly generated
and sampled in a regular fashion. The projection formula also prevents
the formation of unlikely profiles when the approximated stratifying
function gradient would introduce vortices in the classical approach.

Equi-volume model

The geometry of the intracortical laminae (constructed as described
in the Cortical stratification using level set methods and profile
estimation section) depends on the choice of ρ in Eq. (2). If ρ is chosen
to be constant, the resulting surface keeps a constant distance fraction
from the segmented boundaries. We call this the equidistant model.
Using the software described in the Software section, this equidistant
stratification has been used before by Trampel et al. (2012) for
lamina-specific fMRI. Khan et al. (2011) also used weighted averages
of the inner and pial surface level set functions to construct equidistant
intracortical level set surfaces and from these constructed Euclidean
depth profiles. Moreover, previously there have been other studies
that use different implementations of equidistant laminae or that sam-
ple profiles at equally spaced Euclidean cortical depths (Olman et al.,
2012; Polimeni et al., 2010b; Sereno et al., 2012).

However, Fig. 1 shows that the actual cortical layers do notmaintain
a constant distance from the inner and pial surfaces. Hence, the equi-
distant model is not appropriate. In order to build a stratification that

Fig. 1. Sketch from Bok (1929) of a cortical cross section depicting six cytoarchitectonic
layers. Principal dendrites divide each layer into segments. The volume fraction of a
segment is constant across the whole layer. This is possible because the thickness of
the layer changes to compensate the curvature. At locations of high curvature a layer
is relatively thick, at locations of low curvature it is comparably thin.
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Gennari and the inner cortical boundary. This relationship was then
used to remove the depth bias from laminar correlation matrices.

A third approachwas introduced by deVos et al. (2004). One of their
solutions uses isocontours from the Laplace equation and their orthog-
onal profiles to define areas. The profiles are then sampled at intervals
of equal areas instead of equal distances. De Vos' idea of equal areas is
an adaption of equal volumes onto two-dimensional sections and can
be traced to Bok'swork. However, none of the above approaches has ex-
plicitly modeled the volume-preserving criterion.

In this work, we present a novel stratification approach aimed at gen-
erating awell-adapted coordinate systemof the cortex according to Bok's
concept. Our method evolves a geometric deformable model (GDM)
(Sethian, 1999) to define a series of laminae of constant volume, based
on a local model which integrates the influence of curvature from both
cortical boundary surfaces. The laminae are then interpolated to give a
continuous stratification of depth values. From the well-adapted coordi-
nate system isocontours can be chosen to fit myelinated bands locally.
These isocontours are referred to in this study as computed laminae or
laminae. However, we are not able and are not intending to recompute
the anatomical layers. The main purpose of the well-adapted coordinate
system is to provide profiles that are anatomically meaningful to study
MR intensity patterns within cortical areas and their variation
across area boundaries. We validate the equi-volume model using
high-resolution ex-vivo and in-vivo MRI data. Compared with both
Laplace equipotentials and a simplified model that preserves lamina
thicknesses, the proposed equi-volume stratification provides a signifi-
cant improvement both in precision and accuracy.

Methods

Cortical stratification using level set methods and profile estimation

The input data for any cortical stratificationmethod is a segmenta-
tion of the white matter (WM)/gray matter (GM) boundary and the
GM/cerebrospinal fluid (CSF) boundary. In the following, we describe
how to obtain intracortical laminae from the reconstructed inner and
pial surfaces. At first, we compute the level set functions of the two
boundary surfaces. A level set function is a signed distance function. It
is zero on the boundary surface and has values that increase with the
distance from the boundary surface, being positive on one side and neg-
ative on the other side. We can evolve such a level set function φ and
thereby move the zero level set, i.e. the boundary surface. This move-
ment can be determined by local properties of the surface such as

curvature, global properties such as shape and position of the zero
level set and independent properties like an underlying force field
(Sethian, 1999). Here, we use the narrow band level set method to
evolve φ to a target level set surface φd at a certain cortical depth:

∂φ
∂t þ φ−φdð Þ⋅ ∇φj j ¼ !κ ∇φj j: ð1Þ

φ can either be the level set of the inner cortical surface that is evolved
outwards towards the level set of the outer pial surface or φ can be the
level set of the pial surface to construct an inward stratification. Which
of the two ways is more appropriate depends on the data and is
discussed in the experimental Post-mortem samples and In-vivo data
sections. The regularization term !κ ∇φj j keeps the evolved level sets
of the surfaces smooth and avoids shocks. Moreover the surfaces are
able to maintain the topology of the cortical boundaries if desired
(Han et al., 2003). Because the stratification surfaces are close to each
other, the computations are fast and memory efficient even at high
resolution. Implementation details follow the classical narrow band
algorithm with first order differences (Sethian, 1999).

In this work, the target level set is a parameterized weighted aver-
age of the level sets of the inner and pial cortical surfaces φin and φout.
The choice of the parameter ρ allows the target to be at any distance
between the two surfaces.

φd ¼ 1−ρð Þ⋅φin−ρ⋅φout ; ρ∈ 0;1½ &: ð2Þ

Varying ρ and hence φd, we can construct a set of level set surfaces
{φd}d = 1,…,N, stratifying the cortex. A lamina is the volume between
two neighboring surfaces.

Orthogonal profile curves can be easily generated based on the
level set representation. From any starting location x, we obtain the
projection onto the closest surface φd as:

xd ¼ x−φd xð Þ ∇φd xð Þ
∇φd xð Þ
!! !! ð3Þ

andwe can then project xd onto the next closest surface, until we have a
curved 3D profile that intersects all the stratifying surfaces. The classical
approach for constructing profiles is to follow the gradient of the strat-
ifying function. To construct Laplace profiles, one uses the Laplace solu-
tion to provide laminae. Compared with this classical approach, the use
of discrete laminae guarantees that the profiles are directly generated
and sampled in a regular fashion. The projection formula also prevents
the formation of unlikely profiles when the approximated stratifying
function gradient would introduce vortices in the classical approach.

Equi-volume model

The geometry of the intracortical laminae (constructed as described
in the Cortical stratification using level set methods and profile
estimation section) depends on the choice of ρ in Eq. (2). If ρ is chosen
to be constant, the resulting surface keeps a constant distance fraction
from the segmented boundaries. We call this the equidistant model.
Using the software described in the Software section, this equidistant
stratification has been used before by Trampel et al. (2012) for
lamina-specific fMRI. Khan et al. (2011) also used weighted averages
of the inner and pial surface level set functions to construct equidistant
intracortical level set surfaces and from these constructed Euclidean
depth profiles. Moreover, previously there have been other studies
that use different implementations of equidistant laminae or that sam-
ple profiles at equally spaced Euclidean cortical depths (Olman et al.,
2012; Polimeni et al., 2010b; Sereno et al., 2012).

However, Fig. 1 shows that the actual cortical layers do notmaintain
a constant distance from the inner and pial surfaces. Hence, the equi-
distant model is not appropriate. In order to build a stratification that
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segment is constant across the whole layer. This is possible because the thickness of
the layer changes to compensate the curvature. At locations of high curvature a layer
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Gennari and the inner cortical boundary. This relationship was then
used to remove the depth bias from laminar correlation matrices.

A third approachwas introduced by deVos et al. (2004). One of their
solutions uses isocontours from the Laplace equation and their orthog-
onal profiles to define areas. The profiles are then sampled at intervals
of equal areas instead of equal distances. De Vos' idea of equal areas is
an adaption of equal volumes onto two-dimensional sections and can
be traced to Bok'swork. However, none of the above approaches has ex-
plicitly modeled the volume-preserving criterion.

In this work, we present a novel stratification approach aimed at gen-
erating awell-adapted coordinate systemof the cortex according to Bok's
concept. Our method evolves a geometric deformable model (GDM)
(Sethian, 1999) to define a series of laminae of constant volume, based
on a local model which integrates the influence of curvature from both
cortical boundary surfaces. The laminae are then interpolated to give a
continuous stratification of depth values. From the well-adapted coordi-
nate system isocontours can be chosen to fit myelinated bands locally.
These isocontours are referred to in this study as computed laminae or
laminae. However, we are not able and are not intending to recompute
the anatomical layers. The main purpose of the well-adapted coordinate
system is to provide profiles that are anatomically meaningful to study
MR intensity patterns within cortical areas and their variation
across area boundaries. We validate the equi-volume model using
high-resolution ex-vivo and in-vivo MRI data. Compared with both
Laplace equipotentials and a simplified model that preserves lamina
thicknesses, the proposed equi-volume stratification provides a signifi-
cant improvement both in precision and accuracy.

Methods

Cortical stratification using level set methods and profile estimation

The input data for any cortical stratificationmethod is a segmenta-
tion of the white matter (WM)/gray matter (GM) boundary and the
GM/cerebrospinal fluid (CSF) boundary. In the following, we describe
how to obtain intracortical laminae from the reconstructed inner and
pial surfaces. At first, we compute the level set functions of the two
boundary surfaces. A level set function is a signed distance function. It
is zero on the boundary surface and has values that increase with the
distance from the boundary surface, being positive on one side and neg-
ative on the other side. We can evolve such a level set function φ and
thereby move the zero level set, i.e. the boundary surface. This move-
ment can be determined by local properties of the surface such as

curvature, global properties such as shape and position of the zero
level set and independent properties like an underlying force field
(Sethian, 1999). Here, we use the narrow band level set method to
evolve φ to a target level set surface φd at a certain cortical depth:

∂φ
∂t þ φ−φdð Þ⋅ ∇φj j ¼ !κ ∇φj j: ð1Þ

φ can either be the level set of the inner cortical surface that is evolved
outwards towards the level set of the outer pial surface or φ can be the
level set of the pial surface to construct an inward stratification. Which
of the two ways is more appropriate depends on the data and is
discussed in the experimental Post-mortem samples and In-vivo data
sections. The regularization term !κ ∇φj j keeps the evolved level sets
of the surfaces smooth and avoids shocks. Moreover the surfaces are
able to maintain the topology of the cortical boundaries if desired
(Han et al., 2003). Because the stratification surfaces are close to each
other, the computations are fast and memory efficient even at high
resolution. Implementation details follow the classical narrow band
algorithm with first order differences (Sethian, 1999).

In this work, the target level set is a parameterized weighted aver-
age of the level sets of the inner and pial cortical surfaces φin and φout.
The choice of the parameter ρ allows the target to be at any distance
between the two surfaces.

φd ¼ 1−ρð Þ⋅φin−ρ⋅φout ; ρ∈ 0;1½ &: ð2Þ

Varying ρ and hence φd, we can construct a set of level set surfaces
{φd}d = 1,…,N, stratifying the cortex. A lamina is the volume between
two neighboring surfaces.

Orthogonal profile curves can be easily generated based on the
level set representation. From any starting location x, we obtain the
projection onto the closest surface φd as:

xd ¼ x−φd xð Þ ∇φd xð Þ
∇φd xð Þ
!! !! ð3Þ

andwe can then project xd onto the next closest surface, until we have a
curved 3D profile that intersects all the stratifying surfaces. The classical
approach for constructing profiles is to follow the gradient of the strat-
ifying function. To construct Laplace profiles, one uses the Laplace solu-
tion to provide laminae. Compared with this classical approach, the use
of discrete laminae guarantees that the profiles are directly generated
and sampled in a regular fashion. The projection formula also prevents
the formation of unlikely profiles when the approximated stratifying
function gradient would introduce vortices in the classical approach.

Equi-volume model

The geometry of the intracortical laminae (constructed as described
in the Cortical stratification using level set methods and profile
estimation section) depends on the choice of ρ in Eq. (2). If ρ is chosen
to be constant, the resulting surface keeps a constant distance fraction
from the segmented boundaries. We call this the equidistant model.
Using the software described in the Software section, this equidistant
stratification has been used before by Trampel et al. (2012) for
lamina-specific fMRI. Khan et al. (2011) also used weighted averages
of the inner and pial surface level set functions to construct equidistant
intracortical level set surfaces and from these constructed Euclidean
depth profiles. Moreover, previously there have been other studies
that use different implementations of equidistant laminae or that sam-
ple profiles at equally spaced Euclidean cortical depths (Olman et al.,
2012; Polimeni et al., 2010b; Sereno et al., 2012).

However, Fig. 1 shows that the actual cortical layers do notmaintain
a constant distance from the inner and pial surfaces. Hence, the equi-
distant model is not appropriate. In order to build a stratification that
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Gennari and the inner cortical boundary. This relationship was then
used to remove the depth bias from laminar correlation matrices.

A third approachwas introduced by deVos et al. (2004). One of their
solutions uses isocontours from the Laplace equation and their orthog-
onal profiles to define areas. The profiles are then sampled at intervals
of equal areas instead of equal distances. De Vos' idea of equal areas is
an adaption of equal volumes onto two-dimensional sections and can
be traced to Bok'swork. However, none of the above approaches has ex-
plicitly modeled the volume-preserving criterion.

In this work, we present a novel stratification approach aimed at gen-
erating awell-adapted coordinate systemof the cortex according to Bok's
concept. Our method evolves a geometric deformable model (GDM)
(Sethian, 1999) to define a series of laminae of constant volume, based
on a local model which integrates the influence of curvature from both
cortical boundary surfaces. The laminae are then interpolated to give a
continuous stratification of depth values. From the well-adapted coordi-
nate system isocontours can be chosen to fit myelinated bands locally.
These isocontours are referred to in this study as computed laminae or
laminae. However, we are not able and are not intending to recompute
the anatomical layers. The main purpose of the well-adapted coordinate
system is to provide profiles that are anatomically meaningful to study
MR intensity patterns within cortical areas and their variation
across area boundaries. We validate the equi-volume model using
high-resolution ex-vivo and in-vivo MRI data. Compared with both
Laplace equipotentials and a simplified model that preserves lamina
thicknesses, the proposed equi-volume stratification provides a signifi-
cant improvement both in precision and accuracy.

Methods

Cortical stratification using level set methods and profile estimation

The input data for any cortical stratificationmethod is a segmenta-
tion of the white matter (WM)/gray matter (GM) boundary and the
GM/cerebrospinal fluid (CSF) boundary. In the following, we describe
how to obtain intracortical laminae from the reconstructed inner and
pial surfaces. At first, we compute the level set functions of the two
boundary surfaces. A level set function is a signed distance function. It
is zero on the boundary surface and has values that increase with the
distance from the boundary surface, being positive on one side and neg-
ative on the other side. We can evolve such a level set function φ and
thereby move the zero level set, i.e. the boundary surface. This move-
ment can be determined by local properties of the surface such as

curvature, global properties such as shape and position of the zero
level set and independent properties like an underlying force field
(Sethian, 1999). Here, we use the narrow band level set method to
evolve φ to a target level set surface φd at a certain cortical depth:

∂φ
∂t þ φ−φdð Þ⋅ ∇φj j ¼ !κ ∇φj j: ð1Þ

φ can either be the level set of the inner cortical surface that is evolved
outwards towards the level set of the outer pial surface or φ can be the
level set of the pial surface to construct an inward stratification. Which
of the two ways is more appropriate depends on the data and is
discussed in the experimental Post-mortem samples and In-vivo data
sections. The regularization term !κ ∇φj j keeps the evolved level sets
of the surfaces smooth and avoids shocks. Moreover the surfaces are
able to maintain the topology of the cortical boundaries if desired
(Han et al., 2003). Because the stratification surfaces are close to each
other, the computations are fast and memory efficient even at high
resolution. Implementation details follow the classical narrow band
algorithm with first order differences (Sethian, 1999).

In this work, the target level set is a parameterized weighted aver-
age of the level sets of the inner and pial cortical surfaces φin and φout.
The choice of the parameter ρ allows the target to be at any distance
between the two surfaces.

φd ¼ 1−ρð Þ⋅φin−ρ⋅φout ; ρ∈ 0;1½ &: ð2Þ

Varying ρ and hence φd, we can construct a set of level set surfaces
{φd}d = 1,…,N, stratifying the cortex. A lamina is the volume between
two neighboring surfaces.

Orthogonal profile curves can be easily generated based on the
level set representation. From any starting location x, we obtain the
projection onto the closest surface φd as:

xd ¼ x−φd xð Þ ∇φd xð Þ
∇φd xð Þ
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andwe can then project xd onto the next closest surface, until we have a
curved 3D profile that intersects all the stratifying surfaces. The classical
approach for constructing profiles is to follow the gradient of the strat-
ifying function. To construct Laplace profiles, one uses the Laplace solu-
tion to provide laminae. Compared with this classical approach, the use
of discrete laminae guarantees that the profiles are directly generated
and sampled in a regular fashion. The projection formula also prevents
the formation of unlikely profiles when the approximated stratifying
function gradient would introduce vortices in the classical approach.

Equi-volume model

The geometry of the intracortical laminae (constructed as described
in the Cortical stratification using level set methods and profile
estimation section) depends on the choice of ρ in Eq. (2). If ρ is chosen
to be constant, the resulting surface keeps a constant distance fraction
from the segmented boundaries. We call this the equidistant model.
Using the software described in the Software section, this equidistant
stratification has been used before by Trampel et al. (2012) for
lamina-specific fMRI. Khan et al. (2011) also used weighted averages
of the inner and pial surface level set functions to construct equidistant
intracortical level set surfaces and from these constructed Euclidean
depth profiles. Moreover, previously there have been other studies
that use different implementations of equidistant laminae or that sam-
ple profiles at equally spaced Euclidean cortical depths (Olman et al.,
2012; Polimeni et al., 2010b; Sereno et al., 2012).

However, Fig. 1 shows that the actual cortical layers do notmaintain
a constant distance from the inner and pial surfaces. Hence, the equi-
distant model is not appropriate. In order to build a stratification that
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Gennari and the inner cortical boundary. This relationship was then
used to remove the depth bias from laminar correlation matrices.

A third approachwas introduced by deVos et al. (2004). One of their
solutions uses isocontours from the Laplace equation and their orthog-
onal profiles to define areas. The profiles are then sampled at intervals
of equal areas instead of equal distances. De Vos' idea of equal areas is
an adaption of equal volumes onto two-dimensional sections and can
be traced to Bok'swork. However, none of the above approaches has ex-
plicitly modeled the volume-preserving criterion.

In this work, we present a novel stratification approach aimed at gen-
erating awell-adapted coordinate systemof the cortex according to Bok's
concept. Our method evolves a geometric deformable model (GDM)
(Sethian, 1999) to define a series of laminae of constant volume, based
on a local model which integrates the influence of curvature from both
cortical boundary surfaces. The laminae are then interpolated to give a
continuous stratification of depth values. From the well-adapted coordi-
nate system isocontours can be chosen to fit myelinated bands locally.
These isocontours are referred to in this study as computed laminae or
laminae. However, we are not able and are not intending to recompute
the anatomical layers. The main purpose of the well-adapted coordinate
system is to provide profiles that are anatomically meaningful to study
MR intensity patterns within cortical areas and their variation
across area boundaries. We validate the equi-volume model using
high-resolution ex-vivo and in-vivo MRI data. Compared with both
Laplace equipotentials and a simplified model that preserves lamina
thicknesses, the proposed equi-volume stratification provides a signifi-
cant improvement both in precision and accuracy.

Methods

Cortical stratification using level set methods and profile estimation

The input data for any cortical stratificationmethod is a segmenta-
tion of the white matter (WM)/gray matter (GM) boundary and the
GM/cerebrospinal fluid (CSF) boundary. In the following, we describe
how to obtain intracortical laminae from the reconstructed inner and
pial surfaces. At first, we compute the level set functions of the two
boundary surfaces. A level set function is a signed distance function. It
is zero on the boundary surface and has values that increase with the
distance from the boundary surface, being positive on one side and neg-
ative on the other side. We can evolve such a level set function φ and
thereby move the zero level set, i.e. the boundary surface. This move-
ment can be determined by local properties of the surface such as

curvature, global properties such as shape and position of the zero
level set and independent properties like an underlying force field
(Sethian, 1999). Here, we use the narrow band level set method to
evolve φ to a target level set surface φd at a certain cortical depth:

∂φ
∂t þ φ−φdð Þ⋅ ∇φj j ¼ !κ ∇φj j: ð1Þ

φ can either be the level set of the inner cortical surface that is evolved
outwards towards the level set of the outer pial surface or φ can be the
level set of the pial surface to construct an inward stratification. Which
of the two ways is more appropriate depends on the data and is
discussed in the experimental Post-mortem samples and In-vivo data
sections. The regularization term !κ ∇φj j keeps the evolved level sets
of the surfaces smooth and avoids shocks. Moreover the surfaces are
able to maintain the topology of the cortical boundaries if desired
(Han et al., 2003). Because the stratification surfaces are close to each
other, the computations are fast and memory efficient even at high
resolution. Implementation details follow the classical narrow band
algorithm with first order differences (Sethian, 1999).

In this work, the target level set is a parameterized weighted aver-
age of the level sets of the inner and pial cortical surfaces φin and φout.
The choice of the parameter ρ allows the target to be at any distance
between the two surfaces.

φd ¼ 1−ρð Þ⋅φin−ρ⋅φout ; ρ∈ 0;1½ &: ð2Þ

Varying ρ and hence φd, we can construct a set of level set surfaces
{φd}d = 1,…,N, stratifying the cortex. A lamina is the volume between
two neighboring surfaces.

Orthogonal profile curves can be easily generated based on the
level set representation. From any starting location x, we obtain the
projection onto the closest surface φd as:

xd ¼ x−φd xð Þ ∇φd xð Þ
∇φd xð Þ
!! !! ð3Þ

andwe can then project xd onto the next closest surface, until we have a
curved 3D profile that intersects all the stratifying surfaces. The classical
approach for constructing profiles is to follow the gradient of the strat-
ifying function. To construct Laplace profiles, one uses the Laplace solu-
tion to provide laminae. Compared with this classical approach, the use
of discrete laminae guarantees that the profiles are directly generated
and sampled in a regular fashion. The projection formula also prevents
the formation of unlikely profiles when the approximated stratifying
function gradient would introduce vortices in the classical approach.

Equi-volume model

The geometry of the intracortical laminae (constructed as described
in the Cortical stratification using level set methods and profile
estimation section) depends on the choice of ρ in Eq. (2). If ρ is chosen
to be constant, the resulting surface keeps a constant distance fraction
from the segmented boundaries. We call this the equidistant model.
Using the software described in the Software section, this equidistant
stratification has been used before by Trampel et al. (2012) for
lamina-specific fMRI. Khan et al. (2011) also used weighted averages
of the inner and pial surface level set functions to construct equidistant
intracortical level set surfaces and from these constructed Euclidean
depth profiles. Moreover, previously there have been other studies
that use different implementations of equidistant laminae or that sam-
ple profiles at equally spaced Euclidean cortical depths (Olman et al.,
2012; Polimeni et al., 2010b; Sereno et al., 2012).

However, Fig. 1 shows that the actual cortical layers do notmaintain
a constant distance from the inner and pial surfaces. Hence, the equi-
distant model is not appropriate. In order to build a stratification that

Fig. 1. Sketch from Bok (1929) of a cortical cross section depicting six cytoarchitectonic
layers. Principal dendrites divide each layer into segments. The volume fraction of a
segment is constant across the whole layer. This is possible because the thickness of
the layer changes to compensate the curvature. At locations of high curvature a layer
is relatively thick, at locations of low curvature it is comparably thin.

3M.D. Waehnert et al. / NeuroImage xxx (2013) xxx–xxx

Please cite this article as: Waehnert, M.D., et al., Anatomically motivated modeling of cortical laminae, NeuroImage (2013), http://dx.doi.org/
10.1016/j.neuroimage.2013.03.078

• 13 surfaces:  
๏ gm-wm, pial (FreeSurfer) 

๏ WM => 6 equidistant (1 cortical thickness) 

๏ GM => 5 equivolume1 (curvature and thickness) 

• maps of T1, FA, DT radiality2 (Camino) 

• 10 curvature bins 
‣ profiles with similar curvature averaged 

Methods: sampling

1) Waehnert et al. (2013), 'Anatomically motivated modeling of cortical laminae', NeuroImage vol. 93(2), pp. 210-220.   
2) McNab et al. (2013), 'Surface based analysis of diffusion orientation for identifying architectonic domains in the in vivo 
human cortex', NeuroImage, vol.69, pp. 87–100
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single-subject maps 

• FA:  

low on pial surface 

0.1-0.2 in cortex 

low under crowns  

• Radiality: 

radial midcortex gm-3, 
but oblique in fundi 

tangential under fundi



Discussion

• Histology, ex vivo & in vivo MRI: 
• peak radiality in crown (+) 

• tangential DTs in deep layers of the fundus (*) 

• Tractography bias towards crown1 
• result of the gyral fibre pattern 

• seen in macaque and human data 

• model / algorithm improvements 

[1] for a discussion: Van Essen et al. (2014), ‘Mapping Connections in Humans and Non-Human Primates: Aspirations and 
Challenges for Diffusion Imaging’, In: Johansen-Berg, H., Behrens, T.E.J. (Eds.), ‘Diffusion MRI: From Quantitative 
Measurement to In-vivo Neuroanatomy’, pp. 337–358.

sulcal regions altogether lack direct connections using
current tractography algorithms (but see below).

If genuine, this apparent gyral bias would represent a
massive regional difference in connectivity that should
be evident from qualitative inspection of neuroanatom-
ical tracer data generated through more invasive means.
However, as already noted, no major bias favoring gyral
connections is evident from visual inspection of tracer
injection results in the macaque (see Figures 16.1 and
16.2 and Section 16.2.5). Hence, it is important to
consider alternative explanations for these findings.

16.5.2 Anatomical Underpinnings of
the Gyral Bias

Three distinct factors contribute to the apparent gyral
bias and may indeed account for most or all of it. One is
that few reconstructed fiber orientations near the cortical
surface of sulcal fundi and sulcal walls point towards
the cortical surface (i.e. most fiber orientations are
approximately tangential to the gray/white boundary).
Another (the “orientation continuity assumption”) re-
flects the assumption made by current generation

tractography algorithms that the fiber with the least
angular deviation from the current streamline direction
should always be selected. This axis, as we show, is typi-
cally aligned in the direction of the gyral crown. A third
factor is related to how cortical folding directly affects
the anatomy of cortical gray matter and indirectly affects
the distribution of fibers crossing the gray/white
boundary.

Figure 16.8 helps frame the conceptual issues using a
combination of MR images and schematic illustrations.
Consider a “gyral blade” such as that outlined by the
red box in the parasagittal human brain slice in
Figure 16.8a, b. A prototypical gyral blade is a slab of
white matter that emanates from the deep core of white
matter and terminates just under the gyral crown. It is
bounded on either side by gray matter along the banks
of adjoining sulci. In the simplest geometric scenario,
the white matter blade becomes gradually thinner, form-
ing a slightly tapered wedge as it approaches the gyral
crown, owing to the fact that many axons cross the
gray/white boundary along the sulcal banks; hence,
the number ascending towards the gyral crown progres-
sively decreases. In Figure 16.8c, the schematic fiber

FIGURE 16.7 A pronounced gyral bias in
diffusion-based tractography. (a) Streamline
density map on a lateral view of an inflated
right hemisphere (HCP subject 100307), repre-
sented as the number of streamlines reaching
each cortical vertex, using a seeding tractogra-
phy from the entire hemisphere. Color scale is
capped at 10e90% of the total range.
(b) Streamline density map from a post-
mortem macaque. Macaque scan (MAC1a)
was acquired at isotropic 0.43mm resolution
on a 4.7 tesla Bruker scanner (for details, see
D’Arceuil et al 2007; Sotiropoulos et al., 2012;
Jbabdi et al., 2013b).

FIGURE 16.8 Features of white matter or-
ganization in gyral blades that may
contribute to a gyral bias in tractography.
(a) Parasagittal slice from a human
T1-weighted scan. (b) Expanded view of a
gyral blade. The white matter blade decreases
in width between the base of the sulcus and
the gyral crown. (c) Schematization of a
possible configuration of white matter axons
feeding into cortical gray matter. (d) Domi-
nant fiber bundle orientation that would be
estimated using conventional diffusion imag-
ing and analysis. (e) A gyral bias that would
ensue from the preferential termination of
streamlines at the gyral crown.
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