A 3D electron microscopy segmentation pipeline for hyper-realistic diffusion simulations

Michiel Kleinnijenhuis1, Errin Johnson2, Jeroen Mollink1,3, Saad Jbabdi1, Karla Miller1

1 FMRIB Centre, University of Oxford, Oxford, United Kingdom
2 Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
3 Department of Anatomy, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands

• problem: diffusion MRI lacks specificity to tissue features, e.g. myelination
• goal: identify signature MRI signal components specific to tissue compartments
• approach: hyper-realistic simulations based on microscopy data
 • essence of microstructure => MRI signal relation
 • flexibility to manipulate the model

results

myelinated axon segmentation

whole axon segmentation

myelin sheath separation

3D EM data acquisition (Gatan 3View)

pixel classification (Ilastik2)

axon classification (Neuroproof4)

conclusion

• we have developed a method for segmenting large 3D electron microscopy datasets of the white matter
 • minimal manual intervention, yet still fairly laborious
• remaining issues:
 • complex myelin loops
 • split/merge errors automated segmentation
• utility:
 • flexible mesh models for realistic simulations of diffusion MRI
 • informative benchmark statistics of tissue microstructure
 • a way to robustly quantify subtle changes in myelination

methods

background

• problem: diffusion MRI lacks specificity to tissue features, e.g. myelination
• goal: identify signature MRI signal components specific to tissue compartments
• approach: hyper-realistic simulations based on microscopy data
 • essence of microstructure => MRI signal relation
 • flexibility to manipulate the model