Validation of Diffusion Weighted Imaging of cortical anisotropy by means of a histological stain for myelin

In vitro cortical DWI shows layer-specific diffusion

M. Kleinnijenhuis1,3, K. J. Sikma1,3, M. Barth2,4, P. Dederen1, V. Zerbi1,5, B. Küsters6, D. Ruiter1,2, C. H. Slump1, and A-M. van Cappellen van Walsum1,7

1Department of Anatomy, University Medical Centre St. Radboud, Nijmegen, Netherlands, 2Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands, 3Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente; Enschede, Netherlands, 4Twente L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany, 5Department of Radiology, University Medical Centre St. Radboud, Nijmegen, Netherlands, 6MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands

Introduction

To obtain a better understanding of anatomical connectivity, it would be very interesting to track fibers also in and into the cortex. However, the high isotropic component seen in the cortex by current low resolution in vivo Diffusion Weighted Imaging (DWI) makes the estimation of cortical connectivity by tractography very challenging. Recently, anisotropy has been shown in cortical grey matter [1,2]. In the cortex, fiber orientation was found to be predominantly radial, but more complex architectures were also observed in the deeper cortical layers of pigs [2]. In this study we aim to examine cortical fibers in vitro, as a cross-validation with histological techniques (i.e. myelin staining) as the current gold standard is possible.

Methods

Samples:

- Human brain tissue samples of primary visual cortex (V1) including underlying white matter.

MRI:

11.7T Bruker BioSpec system
- Diffusion Weighted Imaging (DWI) → 0.3 mm isotropic
 - DW-SE with segmented EPI readout; TR=13.75 s; TE=26.6 ms; 61 directions + 7 non-diffusion-weighted; 14 repetitions; b-value=4000 s/mm2; FOV=28.8x28.8 mm; matrix=56x56; 55 slices of 0.3 mm; scan time ~14 h.
- Multi-echo Gradient Echo (MGE) → 0.1 mm isotropic
 - 3D FLASH; TR=40 ms; TE=3.36-38.36 ms; ΔTE=5 ms; flip angle=30°; matrix=256x256x256; FOV=28.8x28.8x28.8 mm; scan time 33 min

Histology:

- Tissue samples were stained en bloc for myelinated nerve fibers with Luxol Fast Blue (LFB).

Results

MRI:

- Fractional Anisotropy is non-uniform over layers (Fig.2a).
- The line of Gennari shows reduced anisotropy and diffusivity (Fig.3). FA is also reduced in one of the deep layers.
- In the cortex fiber orientation is predominantly radial (Fig.2c,d), but multifiber reconstructions are seen in Gennari (Fig.2d) with fibers running horizontally within the layer.

Histology:

- Myelin-stained sections (Fig.1) clearly show fibers fanning out radially into the cortex and horizontal intracortical fibers.

Conclusions

- Layer-specific diffusion parameters have been demonstrated in human primary visual cortex (V1) in vitro.
- The usefulness for connectivity research has to be investigated, as tractography within the cortex is challenged by an isotropic component within layers.
- Histological LFB staining successfully showed radial and horizontal cortical fibers and can therefore be used to quantitatively validate DWI results.

Figure 1: A histological virtual slice image at 20x magnification of LFB stained tissue of a 100 µm thick section. Directionality of myelinated axons is clearly visible in the gray matter. The inset shows radial and horizontal fibers in the gray matter.

Figure 2: MRI results. a) FA image showing layer-specific FA (yellow arrows). b) MGE image averaged over echoes. The line of Gennari (layer IVA) is visible as a low intensity band. c) Principal diffusion direction. d) Orientation density functions (ODFs) of the voxel in the yellow square in b). e) Tractography at the WM-GM boundary, radial orientation in the deeper layers and multiple directions in the line of Gennari. f) DT tractography (axial in all voxels; FA=0.10; tracts > 5 mm). c) LFB histology photograph.

Figure 3: Cortical profiles from a small patch of V1 cortex (8 3.25 mm). MGE profiles (blue traces) are included in each panel for anatomical reference. Right panels are blow-outs of left panels. Upper panels: FA profile (red trace). Lower panels: MD and tensor eigenvalue profiles.

Acknowledgements

Bruker Biospin. 11.7T. Investment grants NWO middelgroot 40-03056-00-0403 and NWO 400-402-053 to A.Van Weelk.

M.Kleinnijenhuis@anat.umcn.nl