

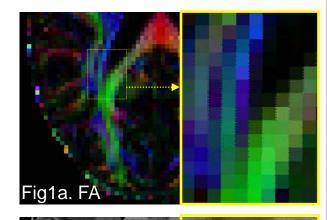
ISMRM 2010, # 4021

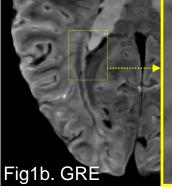
SWI-informed Diffusion Tensor Tractography

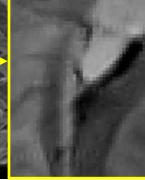
^{1,2} M. Kleinnijenhuis ^{1,3} M. Barth ⁴ D.C. Alexander ^{2,5} A-M. van Cappellen van Walsum ^{1,3} D.G. Norris

¹ Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
² Department of Anatomy, University Medical Centre St.Radboud, Nijmegen, Netherlands
³ Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany
⁴ Centre for Medical Image Computing, Department of Computer Science, University College London London, United Kingdom
⁵ MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands

Radboud University Nijmegen




Problem description


Fibre tractography in diffusion weighted images (DWI) suffers from partial volume effects

- Typical DWI voxels (8 ml) contain multiple tracts at e.g. tract borders (Fig.1a)
- High resolution (0.125 ml) long TE gradient echo images (GRE) also show contrast within the white matter at high field¹ (Fig.1b)

Tractography can benefit from combining the diffusion tensor with information from high resolution volumes

Structure Tensor Informed Fibre Tractography (STIFT)

The structure tensor (ST) is a suitable representation of scalar images to incorporate in tractography algorithms

- The ST captures local image features; the principal structure direction (PSD) is given by the first eigenvector of the ST (Fig.2)
- In anisotropic diffusion filtering the ST is used to enhance certain features of the image
- The ST calculated by edge-enhancing diffusion¹ is most useful for enhancing the sheet-like fiber bundles in the GRE image

The PSD at tract borders in GRE images is expected to be orthogonal to the principal diffusion direction (PDD) (Fig.2)

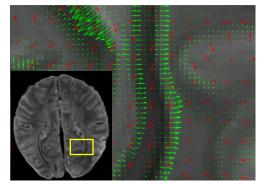


Fig2. PDD (red) & PSD (green)

Fibre tracking with Camino PICo¹ and STIFT

- Adapted PICo informed by the structure tensor
 - Tracking direction (TD) is found by rotating the PDD towards the plane orthogonal to the PSD proportional to its normalized first eigenvalue $\lambda_{\rm l}^{ST}$

$$TD = \left\| \lambda_1^{ST} \left\| PSD \times \left(PDD \times PSD \right) \right\| + \left(1 - \lambda_1^{ST} \right) PDD \right\|$$
 (Eq.1)

- The adapted tracking direction is used in white matter only
- Seed point pairs were placed in the GRE image in adjacent voxels within 0.5 and outside conspicuous fiber bundles

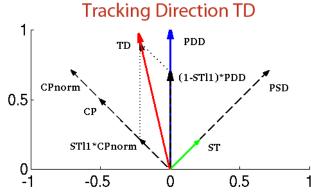
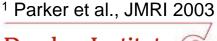
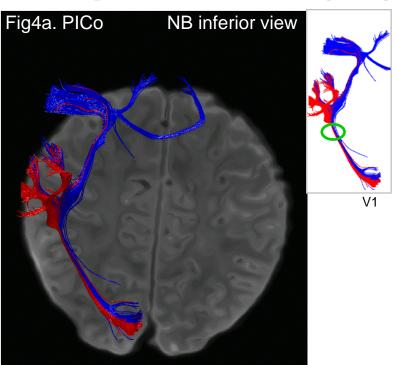
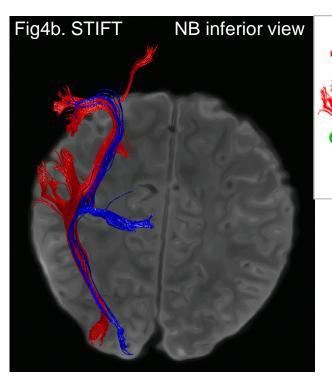



Fig3. Tracking Direction

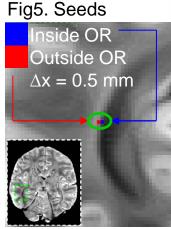


Optic radiation (OR)



PICo:

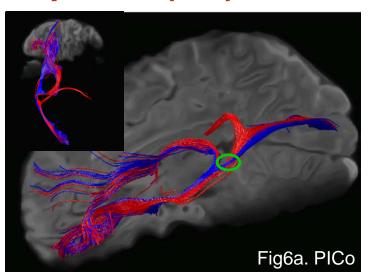
Frontal¹ and temporal²

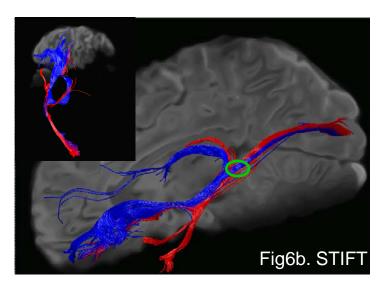

to V1

- ¹ Inferior occipito-frontal fasciculus (IOFF))
 ² Inferior longitudinal fasciculus (ILF)
 ³ Optic radiation (OR)

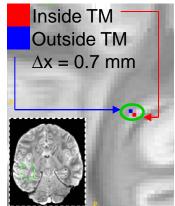
STIFT:

- Meyer's loop to V1³
- Frontal¹ and temporal² to extrastriate areas


Meyer's loop


extra striate

Tapetum (TM)


PICo:

- Frontal to V1; mixed for both seeds
- Tapetum corpus callosum specific to seed in TM

STIFT:

- Separation of frontal fibers
 - Temporal tapetum specific to seed in TM

Fig7. Seeds

Anatomical specificity increased with STIFT

Closely spaced seed points in neighbouring tracts result in well separated tracts using STIFT

- From the seedpoint within the OR³, the geniculostriate pathway was tracked, while seeding just outside the OR reconstructed the associative fibers of the IOFF¹ and ILF²; PICo tracked the IOFF and ILF to V1
- Different parts of the tapetum were tracked by PICo and STIFT;
 STIFT showed clearly separate fiber tracts for both seeds

Large veins and iron-rich subcortical structures can affect STIFT results negatively

At specific locations STIFT can be a valuable tool to increase specificity and accuracy of fiber tracking

¹ Inferior occipito-frontal fasciculus (IOFF)

² Inferior longitudinal fasciculus (ILF)

³ Optic radiation (OR)

Acknowledgements

VIP Brain Networks

Thanks to Dirk-Jan Kroon for the implementation of the edgeenhancing diffusion filter

ď

M.Kleinnijenhuis@anat.umcn.nl # 4021

Additional material

Methods: acquisition

DWI, GRE, and T1-weighted images in two healthy volunteers:

Table 1. Acquisition parameters

* subj1/subj2

	DWI	GRE	T1
sequence	SE-EPI	3D FLASH	MPRAGE
field strength	3T	7T	3T
coil	32-ch array	8-ch array	32-ch array
TR/TE/TI	8300/95/- ms	36/25/- ms	2300/3.03/1100 ms
matrix size	110 x 110	448 x 336	256 x 256
FOV [mm]	220 x 220	224 x 168	256 x 256
slice thickness [mm]	2.0	0.5	1.0
Resolution [mm]	2.0 x 2.0 x 2.0	0.5 x 0.5 x 0.5	1.0 x 1.0 x 1.0
no of slices	64	208/240*	192
Bandwidth		120 Hz/px	
flip angle [°]		15	
diffusion volumes	7 @ b = 0 s/mm2	Х	X
	61 @ b = 1000 s/mm2	X	X
acquisition time	~10 min	~20 min	~10 min

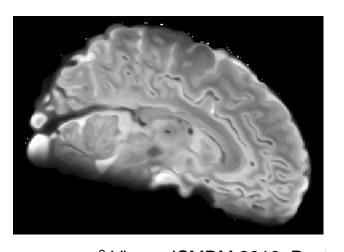
Methods: preprocessing (1)

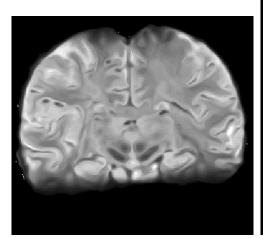
- 1. DWI artefact detection & realignment with PATCH1
- 2. Brain extraction with FSL
- 3. Bias field correction with FSL
- 4. Coregistration
 - a) GRE → T1; with FSL using FAST-based weighting volumes
 - b) Mean b=0 DWI → T1; with constrained warping²
- 5. GRE image structure tensor with edge-enhancing diffusion³
- 6. Vessel enhancing diffusion with VED⁴
- 7. WM-GM Segmentation with FSL

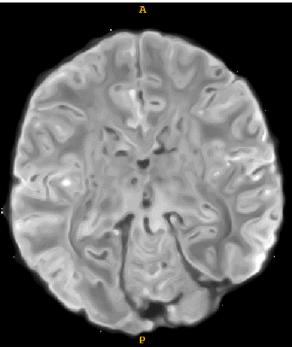
⁴ Koopmans, MRMP 2008

¹ Zwiers, ISMRM 2009

² Visser, ISMRM 2010; Poster #3459

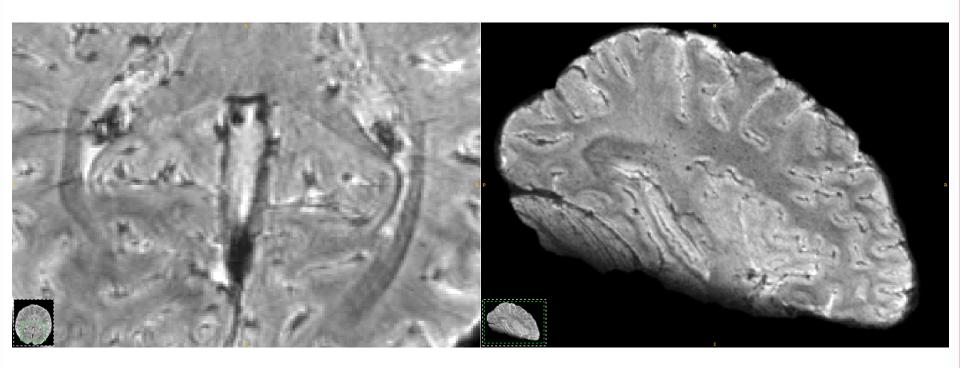

³ Kroon & Slump, IEEE-EMBS Benelux 2009




Methods: preprocessing (2)

Coregistration

- a) GRE → T1; with FSL using FAST-based weighting volumes
- b) Mean b=0 DWI → T1; with constrained warping in PE direction²


² Visser, ISMRM 2010; Poster #3459

Methods: preprocessing (3)

GRE image structure tensor with edge-enhancing diffusion³

