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This technical note describes a collection of test statistics accounting for
estimation uncertainties at the within-subject level, that can be used as
alternatives to the standard t statistic in one-sample random-effect
analyses, i.e. when testing the mean effect of a population. We build
such test statistics by estimating the across-subject distribution of the
effects using maximum likelihood under a nonparametric mixed-effect
model. For inference purposes, the statistics are calibrated using
permutation tests to achieve exact false positive control under a
symmetry assumption regarding the across-subject distribution. The
new tests are implemented in a freely available toolbox for SPM called
Distance.
© 2007 Elsevier Inc. All rights reserved.

Introduction

Conventional random-effect analysis in fMRI takes as input a
set of BOLD contrast images, or effects estimated from a first-
level, within-subject analysis, to produce a group statistical map
which is further thresholded according to a desired significance
level. Both parametric and nonparametric versions of that approach
have been implemented in several software packages, generally in
a massively univariate fashion. Such techniques have in common
the fact that they reduce the experimental information at hand to a
series of “first-order” summary statistics.

Over the past few years, mixed-effect (MFX) models have been
proposed in order to account for the within-subject uncertainties, as
represented in particular by the estimated variances of the effect
estimates, therefore correcting the group statistical map for higher-
order information (Holmes and Friston, 1998; Worsley et al., 2002;
Beckmann et al., 2003; Neumann and Lohmann, 2003; Woolrich et
al., 2004; Friston et al., 2005; Mériaux et al., 2006b). Roughly
speaking, this correction acts as a reweighting of the subjects
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according to the reliability of their respective effect estimates.
Statistics undergoing MFX correction may have more detection
power than their uncorrected analogues, provided the within-
subject uncertainties are not positively correlated with the effects
(Mériaux et al., 2006a); in other words, first-level estimation
performances should not be biased towards small effects.

To clarify the context, assume n subjects are selected randomly
in a population of interest and submitted to the same fMRI
experiment. The within-subject analysis of the scans then
produces, in one particular voxel of the standardized space
(usually, the MNI/Talairach space) and for each subject i, an
estimate β̂i of the BOLD effect relative to a given contrast of
experimental conditions. For mathematical clarity, we will restrict
ourselves to scalar (one-dimensional) effects. While the estimated
effect β̂i generally differs from the true but unobserved effect βi,
assume for now perfect within-subject estimation so that β̂i=βi for
all i. We thus are given a sample (β1, β2, …, βn) drawn from an
unknown probability density function (PDF) f (β) that describes the
distribution of the effects in the population.

This paper specifically addresses inferences about a location
parameter (mean, median, mode, etc.). Assume for instance we
wish to test the null hypothesis that the population mean is
negative:

H0: μf ¼
Z

bf ðbÞdbV0

To that end, we may use the classical one-sample t test. We start
with computing the t statistic,

t ¼ ̂μf

̂rf=
ffiffiffi
n

p ; with ̂μf ¼
1
n

X
i

bi;

r̂2f ¼
1

n� 1

X
i

bi � ̂μfð Þ2 ð1Þ
Next, we reject H0, hence accept the alternative H1: μfN0, if the
probability under H0 of attaining the observed t value is lower than
a given false positive rate. Under the assumption that f (β ) is
normal, this probability is well known to be obtained from the

mailto:alexis.roche@cea.fr
http://dx.doi.org/10.1016/j.neuroimage.2007.06.043


502 A. Roche et al. / NeuroImage 38 (2007) 501–510
Student distribution with n−1 degrees of freedom. In this
parametric context, the t statistic can be proved to be optimally
sensitive (technically, in the sense of the uniformly most powerful
unbiased test, see Good, 2005).

Non-Gaussian populations

If normality is not tenable, however, the Student distribution is
valid only in the limit of large samples, and may thus lead to inexact
control over the false positive rate in small samples. This problem
can be worked around using non-parametric calibration schemes
such as sign permutations (Holmes et al., 1996; Good, 2005), which
allow exact inferences under a milder assumption of symmetry
regarding f (β). Although we strongly recommend permutation tests,
they only provide an alternative strategy of thresholding a given
statistic and, as such, address a specificity issue.

The fact that the sampling PDF f (β) may not be normal also
raises a sensitivity issue as the t statistic may no longer yield
optimal power when normality does not hold. Without prior
knowledge of the shape of f (β), a reasonable default choice for the
test statistic is one that maintains good detection performance over
a wide range of PDFs. Such a statistic is robust, not quite in the
classical sense of being resistant to outliers, but in the looser sense
of being resistant to distributions that tend to produce outliers, such
as heavy-tailed, skewed, or multimodal distributions. Standard
examples of robust test statistics include Fisher’s sign statistic,
Wilcoxon’s signed rank, the empirical likelihood ratio (Owen,
2001), or M-estimators (Rousseeuw and Leroy, 1987), which are
fairly more sensitive than the t statistic in some non-Gaussian
distributions. As a matter of fact, such statistics have been used
previously in fMRI group analyses (Brammer et al., 1997; Wager
et al., 2005; Mériaux et al., 2006c; Dehaene-Lambertz et al.,
2006b; Rorden et al., 2007), most often combined with permuta-
tion tests.

Mixed effects

The problem of choosing an appropriate test statistic becomes
more complex when mixed effects are taken into account. Up to
now, we have assumed that the observations are exact in the sense
that they are drawn from the very PDF f (β) for which the inference
is to be made. Assume more generally that, instead of βi, we
observe β̂i=βi+εi, where εi is typically an additive Gaussian noise
with known standard deviation σi. Intuitively, observations with
high uncertainty are likely to be outliers, which reinforces the need
for a robust test statistic. Hence, in a first approach, we could pick
one of the above mentioned statistics and compute it from the
(noisy) observations. While it is possible to set up reasonable
assumptions under which this leads to a valid test, we suspect that
further detection power can be gained by correcting the statistic for
the uncertainty levels σi.

This paper proposes a general method of correcting test
statistics for mixed effects. The key to our approach is to interpret a
variety of usual, “first-order” test statistics as maximum likelihood
estimators of natural location parameters, or likelihood ratios.
MFX correction then follows from developing maximum like-
lihood estimation under a nonparametric MFX model. Nonpara-
metric, here, refers to the modeling assumptions regarding the
random effect’s PDF f (β). To our best knowledge, the determina-
tion of tests for a location parameter under MFX models, has been
restricted to date to the case where f (β) is normal.
Throughout this paper, we will focus on inferences about a
location parameter. Other group analysis problems, which are not
covered here, include group comparison (two-sample tests) and
more general tests of dependence. Most of the concepts presented
below can be extended to those situations, albeit not necessarily in
a straightforward way.

Method

In the following, we consider a particular voxel in the
standardized space, therefore omitting voxel indexes in the
notations. This is to say that we are adopting a massively
univariate approach in which a test statistic is computed in each
voxel independently from the others. This approach is chosen
mainly for its simplicity and computational efficiency. The concept
of voxel is not essential here as the same univariate approach can
be used, e.g. within the parcel-based framework of Thirion et al.
(2006) to handle localization uncertainties in the standardized
space. Alternatively, using a multivariate extension of our
formulation (which is beyond the scope of this paper), tests could
be performed on spatial neighborhoods in a way similar to Friman
et al. (2003), thus pooling the signal across voxels in an attempt to
further improve detection power.

Mixed-effect model

Our goal is to make an inference about a location parameter
such as the population mean or median, using the sample of
estimated effects (β̂1, …, β̂n) as input data. In order to relate the
unknown parameter with the observations, we adopt the following
hierarchical sampling model:

First level (within-subject)
For each subject, the estimated effect relates to the true effect

through a known conditional PDF, which is assumed Gaussian:

8i; ̂bijbifɡ iðb̂iÞ ¼
1ffiffiffiffiffiffi
2p

p
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e
�

̂bi�bið Þ2
2r2

i ð2Þ

Equivalently, β̂i=βi+εi, where εi is an independent zero-mean
Gaussian noise with standard deviation σi. We say that the noise is
homoscedastic when σi is constant across subjects, and heteros-
cedastic in the converse situation. In practice, σi is usually
estimated from the residuals of a multiple regression, suggesting
that the Gaussian model neglects the precision on σi (equivalently,
it assigns infinite degrees of freedom to each subject). Student
distributions would be a more suitable choice than Gaussians,
summarizing each subject by sufficient statistics, equivalently to
the “full MFX” strategies advocated in Woolrich et al. (2004) and
Friston et al. (2005). While we avoid that approach for
computational reasons, we stress that assuming Gaussian noise
does not hamper the test’s specificity when calibrated using
permutations (see section on Statistical calibration); the only
potential impact is on the sensitivity.

Second level (between-subject)
The distribution of the true effects in the population is modeled

as a PDF f∈F , where F is some family:

8i; biff ðbiÞ ð3Þ
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In the following, we mainly deal with the nonparametric case
where F is the infinite-dimensional space of all PDFs on R. If F is
restricted to the Gaussian family, we fall back to the model
considered e.g. inWorsley et al. (2002), Beckmann et al. (2003), and
Mériaux et al. (2006b). Also notice, the linear model underlying the
standard one-sample t statistic may be seen as a further restriction
whereby the first-level noise is assumed homoscedastic.

Marginalizing out the true effects, one sees that each
observation β̂i has PDF ɡi� f resulting from the convolution
product of within-subject and between-subject distributions. This
shows that the observations are non-identically distributed unless
the noise is homoscedastic. The hierarchical model is summarized
by its likelihood function which, under the usual independence
sampling assumptions, reads:

Lðf Þ ¼ p ̂b1; N ; ̂bnj f
� �

¼ j
n

i¼1
ɡ i � f ̂bi

� �
ð4Þ

Test statistics

The general problem we tackle is to test a null hypothesis H0:
θ∈Θ0 about some parameter of interest θ of the population,
where Θ0⊂R is some set of putative values for θ. Mathematically,
θ=ϕ( f ) is defined as a real-valued function ϕ: F→R of the
random effect’s PDF f. A very common example of parameter is
the population mean, which corresponds to the choice ϕ( f )= ∫β f
(β )dβ, the function known as the expectation, or mean.

Our approach is based on building any test statistic from a
maximum likelihood estimate f̂ of the random effect’s PDF. While
such an estimate is bound to be very noisy given the small number of
subjects, some many-to-one functions of f̂ may have sufficiently
reduced statistical variability to enable powerful inferences. After
developing Maximum likelihood PDF estimation, we will consider
two families of test statistics: Parameter estimators and Likelihood
ratios.

Maximum likelihood PDF
A maximum likelihood estimate f̂ is one that maximizes L( f ) in

Eq. (4) over the space F of admissible PDFs. In presence of
nonzero first-level variances, such a maximization problem has
typically no closed-form solution, which makes it necessary in
Fig. 1. Examples of parametric and nonparametric maximum likelihood PDF estim
bimodal (right). In both cases, a sample size of 20 was drawn and contaminated with
distribution Γ(3,

1
6
). Each of the two panels shows the true PDF (dashed line), the
practice to resort to numerical solvers such as expectation–
maximization (EM) algorithms (Dempster et al., 1977). When the
search space is restricted to the Gaussian family, one may use the
EM algorithm proposed in Mériaux et al. (2006b) and reproduced
in Appendix A.1.

We focus here on the case whereF is the space of all PDFs onR,
so that we are searching for the nonparametric maximum likelihood
estimate (NPMLE). From the general results given in Lindsay
(1983), the NPMLE is necessarily a mixture of at most n Dirac
masses, andmay henceforth be tracked in a finite-dimensional space:

f ðbÞ ¼
Xn
i¼1

wid b� zið Þ; ð5Þ

where wi are unknown mixing proportions (nonnegative values that
sum up to 1) and zi are unknown support points. As seen in Fig. 1, the
NPMLE may have fewer mixture components than n, if some
support points coincide or if some mixing proportions vanish. This
representation theorem generalizes the well-known property, central
to nonparametric likelihood methods, that the NPMLE under exact
observations is the so-called empirical distribution (Owen, 2001):

̂f e bð Þ ¼ 1
n

Xn
i¼1

d b� ̂bi
� �

; ð6Þ

which corresponds to uniformmixing proportions, i.e.∀i,wi=
1
n
, and

supports points coinciding with the observations.
Since no explicit expression is available in the general case

where some observations are inexact, we propose in Appendix A.2
an EM algorithm to solve for the NPMLE iteratively. Like any
EM, it is guaranteed to return an estimate with higher likelihood
than its starting point, which we may choose as the empirical
distribution f̂ e. Note, however, that the EM algorithm may get
trapped in a local maximum, a situation that seems to occur
preferentially when the between-subject variability is swamped by
the within-subject variability.

Alternative algorithms are given in Lindsay (1983) and Magder
and Zeger (1996) but, being iterative and deterministic, they are
also prone to local convergence. Robustness can be gained using
stochastic EM variants, such as the SAEM algorithm (Delyon et
al., 1999), at the expense of heavier computation time. In close
spirit, the estimation of f may also be re-formulated in the
nonparametric Bayesian framework described in Escobar and West
ates in the MFX model, when the true PDF is respectively normal (left) and
first-level Gaussian noise with heteroscedastic variances drawn in a Gamma
parametric Gaussian fit (solid line), and the nonparametric fit (stems).
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(1998), again leading to stochastic sampling. We are currently
exploring, but it is important to realize that they are far more
computationally intensive than the EM algorithm considered here,
itself rather demanding (see Discussion).

Parameter estimators
An intuitive test statistic to consider for H0: θ∈Θ0 is a

maximum likelihood estimator θ̂ of θ. A key remark is that,
if f̂ is a NPMLE of the PDF f, then θ̂=ϕ( f̂ ) is a NPMLE of
θ=ϕ( f ) in the sense of the profile likelihood:

L̃ðhÞ ¼ max
faF h

Lðf Þ; with F h ¼ faF ;uð f Þ ¼ hf g ð7Þ

From Eq. (5), we know that the NPMLE f̂ is adjusted via mixing
proportions (ŵ1, ŵ2, …, ŵn) and support points (ẑ1, ẑ2, …, ẑ n), and
simplifies to the empirical distribution f̂ e given by Eq. (6) in the
special case of exact observations. The fact thatϕ(f̂ ) is optimal in the
sense of profile likelihood suggests that it is asymptotically a more
efficient estimator than ϕ(f̂e), thus presumably a more sensitive test
statistic. This leads us to a general MFX correction principle.

Note that this argument relies on the availability of the global
likelihood maximizer which, as already pointed out, is not
guaranteed by the EM algorithm. In practice, MFX correction is
performed without warranty of increasing profile likelihood, which
may reduce the sensitivity of the ensuing test statistics as compared
to the ideal situation where global maximization is guaranteed.
Location estimators. The population mean is defined by ϕ( f )=
∫β f ( β )dβ, and thus has the following statistic as its NPMLE:

̂μ ¼ uð ̂f Þ ¼
X
i

ŵi ̂zi; ð8Þ

which coincides with the classical sample mean when the
observations are exact (then ∀i, ẑi= β̂i and ŵi=1/n). While we
note that the sample mean is unbiased under our modeling
assumptions, the MFX-corrected estimator is more robust to those
outliers that come with high first-level uncertainties. Such outliers
are artefactual in the sense that they result from inaccuracies in the
within-subject processing pipeline, due to poor distortion and/or
motion correction, poor spatial normalization, resampling artifacts,
unaccounted spikes in the time series, inappropriate BOLD
response models, etc.

Also, if strongly non-Gaussian, the actual random effect’s PDF
f may have a tendency to bear behavioral outliers, i.e. subjects with
activation patterns genuinely atypical even though they meet the
recruitment criteria set up by the experimenter. Such a distribution
may be better characterized by a “robust” location parameter. For
instance, the NPMLE of the median is found by solving: F̂(z)=1/2,
where F̂ is the estimated cumulative distribution function (CDF):

̂FðbÞ ¼
X
i

ŵiv b� ̂zið Þ; ð9Þ

χ(·) being the indicator function of Rþ. The root of this equation is
a weighted median.

A general difficulty with location estimators is that they are not
invariant under multiplication of the sample by a positive factor.
Since group effects have typically different scales across brain
regions, location estimators tend to produce statistical maps that are
highly non-stationary, thus requiring non-uniform thresholding
strategies for good detection performance (see section of Statistical
calibration).

Mixed-effect Fisher’s sign statistic. The sign statistic ts is the
number of positive values in a sample (using the convention that
zero counts half). If the observations are exact, ts provides an
efficient test of the population median: under the null hypothesis
that the median is zero, ts follows a binomial law Bn;12

whatever the
shape of f. An alternative interpretation is that ts/n=1− F̂e(0),
where F̂e is the empirical CDF corresponding to Eq. (6), therefore
ts is, up to a constant factor, the NPMLE of ϕ(f)=1−F(0), which is
the probability of a positive effect. Clearly, the median vanishes if
and only if ϕ(f)=1/2. This interpretation provides the key to an
MFX-corrected Fisher’s sign statistic:

tMFX
s ¼ n 1� F̂ð0Þ

h i
¼ n

X
i

ŵiv ̂zið Þ;

where F̂ is the NPMLE of the CDF given by Eq. (9).
Mixed-effect Wilcoxon’s signed rank statistic. The Wilcoxon’s
signed rank statistic is a classical alternative to the sign statistic that
works by sorting the absolute effects in ascending order, then
summing up the ranks multiplied by the corresponding effect’s
signs, yielding:

tw ¼
Xn
i¼1

sign ̂bi
� �

rank j ̂bij
� �

It is meaningful to interpret Wilcoxon’s statistic as a measure
of symmetry about zero. More specifically, if the observations are
exact and if the population median is zero, we easily prove that
tw is n times the NPMLE of the covariance ϕ( f )=Cov(sign(Z),
F+(|Z|)) where F+ is the CDF of |Z|, that is: F+(u)=F(u)−F(−u)
for u≥0. Clearly, ϕ(f)=0 if the effect’s sign and the effect’s
absolute value are statistically independent, a situation that occurs
in particular if the PDF f is symmetric about zero.

Therefore, under the assumption that f is symmetric, rejecting
ϕ( f )=0 implies that the (unique) location parameter of f is different
from zero. Note that the reasoning is valid whatever the function
applied to the absolute effects, yet the fact that F+(|Z|) is uniformly
distributed in [0, 1] ensures that tw is scale-invariant. The MFX
generalization follows straightforwardly from this interpretation:

tMFX
w ¼

Xn
i¼1

ŵisign ̂zið Þ F̂ j ̂zijð Þ � F̂ �j ̂zijð Þ
h i

;

with F̂ specified as in Eq. (9).

Likelihood ratio
Rather than working in the parameter space and picking a

parameter estimate that maximizes likelihood, we may work in the
likelihood space and consider the maximum likelihood ratio (LR)
as a test statistic for H0: θ∈Θ0,

r ¼ maxfaF 0 Lðf Þ
maxfaF Lðf Þ ¼ maxhaH0 L̃ðhÞ

maxhaR L̃ðhÞ;

where F 0⊂R is the subspace of PDFs for which ϕ( f )∈Θ0.
Clearly, r takes on values between 0 and 1, small values indicating
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that the random effect’s PDF is unlikely to lie in F 0. The LR is
partly justified by the Neyman–Pearson lemma, which says that
the most sensitive statistic for the test of two simple hypotheses is
the ratio of their respective likelihoods.

For the sake of clarity, we now specify ϕ( f ) as the mean.
Computing the LR involves performing both constrained and
unconstrained likelihood maximizations. Consider first the simple
null hypothesis H0: θ=0 so that Θ0={0}. Practical constrained
maximization is then performed using an adaptation of the above
discussed EM algorithm for the unconstrained problem (see
Appendix A.2). Scale invariance is guaranteed here by the fact
that each of the two maximization sets contains all scalings of any
of its PDFs. By construction, however, this LR statistic is well
suited for a two-sided test as it is blind to the mean effect’s sign.

In order to perform a one-sided test, hence testing H0: θ≤0, one
should ideally solve the constrained maximization problem on
Θ0=R� but this is practically intractable as the profile likelihood
may not be bell-shaped. To work around this problem, we postulate
a property of the above maximum likelihood ratio defined for the
simple null H0: θ=0, which holds for a variety of likelihood ratios
and is known as Wilks’ phenomenon: if f∈F 0, then −2log r
converges in distribution towards a χ2 as the sample size goes to
infinity, the χ2 having as many degrees of freedom as the
dimension of the parameter of interest, one in this case. This result
is proved in Owen (2001) in the case of exact observations; its
generalization to mixed effects will be omitted here as the proof is
rather technical and out of the scope of this paper.

According to Wilks’ phenomenon, the following one-sided LR
variant:

tMFX
r ¼ signð ̂μÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2logr;

p
ð10Þ

where μ̂ is the mean NPMLE as in Eq. (8), is asymptotically
distributed like a normalized Gaussian. Simulations suggest that
this is generally an anticonservative approximation (see Fig. 2). We
will refer to tr

MFX as the MFX empirical LR statistic (MFX–ELR),
following Owen’s preference for the word “empirical” rather than
“nonparametric” (Owen, 2001).

Parametric statistics
Similar maximum likelihood estimators or likelihood ratios can

be derived in parametric context, that is, by restricting the search
Fig. 2. QQ plot of permutation resampled values of tr
MFX plotted against normal

population N(0, 1) with first level variances drawn in a Gamma distribution Γ(3, 1/6
sign permutations and Wilks' asymptotic z-score.
space F to a finite-dimensional family. For instance, substituting
the NPMLE for the PDF that maximizes likelihood over the
Gaussian family, we obtain parametric maximum likelihood
location estimators that generally differ from their nonparametric
versions discussed in the section on Parameter estimators. Like-
wise, we define a Gaussian version of the one-sided likelihood
ratio (see section on Likelihood ratio), hereafter referenced as the
MFX Gaussian LR statistic (MFX–GLR), which is shown to
consistently generalize the standard one-sample t statistic (Mériaux
et al., 2006b).

In the fMRI group analysis, however, we tend to prefer
nonparametric statistics because prior information about the
random effect’s PDF is barely available as it depends on the
cognitive task under study. Admittedly, nonparametric estimation
results in overfitting the PDF owing to the so-called “curse of
dimensionality”, however low-dimensional parameters computed
from that nonparametric fit may actually be efficient estimators.
Simulations confirm this intuition, showing that in non-Gaussian
distributions, the MFX–ELR can substantially outperform the
MFX–GLR in terms of power, while, surprisingly enough, both
statistics turn out to perform comparably in Gaussian distributions,
the case most favorable to the MFX–GLR (see Fig. 3).

Statistical calibration

Having chosen a test statistic t for H0: θ∈Θ0, we now turn to
the problem of designing a proper statistical test, which involves
defining the PDF p(t|H0) of the statistic given H0. In a pure
frequentist approach, however, this PDF is not uniquely defined
since it is a priori dependent on the unknown random effect’s
PDF f satisfying H0. For likelihood ratio statistics, this dependence
may vanish in the limit of large samples as a consequence of
Wilks’ phenomenon (see section on Likelihood ratio), but such
asymptotic properties only provide crude significance assessments
in small samples. An alternative is then to use resampling
techniques (Nichols and Hayasaka, 2003), a particularly useful
example of which are, in our context, sign permutations (Holmes
et al., 1996).

Sign permutations
Sign permutations consist of tabulating the reference PDF

p(t|H0) by resampling the estimated effects across all possible flips
quantiles, for sample sizes of 10 (left) and 30 (right) drawn in a normal
). The solid and dashed lines show, respectively, the z-score computed using



Fig. 3. Monte Carlo-simulated ROC curves comparing the detection power of the permutation tests based respectively on the MFX–ELR (solid curve) and the
MFX–GLR (dotted curve). In all three panels, 10,000 samples of size 10 were drawn from a fixed PDF f ( β ) with mean 1, and corrupted with homoscedastic
Gaussian noise with standard deviation 1. Left, f ( β )=N(1, 1) is Gaussian. Middle, f ( β )=1/2[N(−1, 1)+N(3, 1)] is a symmetric mixture of two Gaussians.
Right, f ( β )=1/2[N(−1, 0.1)+N(3, 0.1)] is a mixture with sharper modes. Note that the MFX–GLR statistic is equivalent here to the standard t statistic
because the noise is homoscedastic.
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of signs, the number of which is 2n. They are primarily intended to
test a simple null hypothesis H0: θ=0 about a location parameter
under the restrictive assumption that f is symmetric, in which case
all location parameters are identical. Therefore, testing the mean is
equivalent to testing any other location parameter, although the test
statistics derived according to different location parameters (see
section on Test statistics) may not be equally sensitive.

In MFX context, Mériaux et al. (2006b) formulate two
additional conditions on which sign permutations are applicable:
(i) the subjects are drawn independently; (ii) first-level estimators
are location equivariant and scale-invariant. These conditions
imply that the distributions of a well-behaved test statistic are
stochastically increasing w.r.t. the population mean effect, which
validates the use of sign permutations to perform one-sided tests,
i.e. testing the composite hypothesis H0: θ≤0. Notice that those
two conditions are more general than those underlying the MFX
model stated in the section on Mixed-effect model to guide the test
statistic’s derivation. In particular, sign permutations do not require
the first-level variability to be genuinely Gaussian, nor do they
assume a parametric form for the random effect’s PDF provided it
is symmetric.

The permutation-based distribution of t is conditional on the
effects’ absolute values and the first-level variances when present,
meaning that the test is conditionally exact, hence unconditionally
exact, up to the discretization induced by the finite number of
permutations; P-values are conservatively precise at 2−n. This is the
same permutation mechanism as that classically used to calibrate
both Fisher’s sign statistic and Wilcoxon’s signed rank (see section
on Parameter estimators), which are special cases for which the
permutation-based distribution is data-independent. Another intri-
guing example is the t statistic, whose permutation-based distribu-
tion converges towards the Student distribution in the limit of large
samples (Fieller, 2005).
Multiple testing
In image analysis context, a test is performed at each and every

voxel in a search volume. It is computationally efficient to
threshold the statistical map using a uniform value, which can be
tuned, e.g., so as to control the false positive rate below a desired
level. While spatially variable thresholds are conceivable and, to
some extent, more natural, uniform thresholding yields good
detection power provided the test statistic’s distribution is reason-
ably stationary. As already pointed out, this constraint calls for
scale-invariant statistics.

A major advantage of permutation tests is that they readily
solve the multiple comparison problem under multivariate
exchangeability in a way that circumvents both the parametric
assumptions and the approximations underlying random field
theory (Worsley, 1994). Like in Holmes et al. (1996), Bullmore et
al. (1999), Nichols and Holmes (2002), and Hayasaka and Nichols
(2003), we compute voxel-level P-values corrected for the
familywise error rate by calibrating the maximum statistic over
the search volume. Similarly, we compute corrected cluster-level
P-values from the permutation-based distribution of the maximum
cluster extent statistic after thresholding.
Discussion

The one-sample tests described in this paper have been
implemented in C language within the NiPy library project
(http://neuromimaging.scipy.org). A Matlab™ interface exists
(Distance toolbox; http://www.madic.org) and is released as a
plug-in for the Statistical Parametric Mapping software (SPM;
http://www.fil.ion.ucl.ac.uk/spm).

Practical use

Our initial motivation was to avoid a naive approach in which
users would perform outlier diagnosis, drop some subjects and run
the parametric t test (or any other test) on the remaining subjects.
Technically, that approach boils down to a MFX analysis where
outliers are assigned infinite uncertainty, but it breaks statistical
independence whenever outliers are detected from a joint analysis
of the subjects. Unless intrinsic evidence supports excluding some
subjects, this “drop and test” approach is bound to produce
critically anti-conservative inferences. Instead, we suggest using
MFX corrected test statistics, which are robust to artefactual
outliers, yet assessing significance levels through permutations
from the complete original dataset.

In practice, MFX statistics may fail to increase detection power
over statistics that ignore within-subject variances, if there exists a
positive correlation between the within-subject variances and the
corresponding effect estimates (Mériaux et al., 2006a). This
situation typically occurs when first-level analyses use an inaccurate

http://neuromimaging.scipy.org
http://www.madic.org
http://www.fil.ion.ucl.ac.uk/spm


Fig. 4. Sentence×Speaker interaction (FIAC'05 dataset). Comparison of three permutation tests using different statistics, from left to right: the Student statistic
(parametric thresholding produces an almost identical map), the MFX–GLR, the MFX–ELR. Maximum intensity projections are displayed after thresholding at
P=0.01 uncorrected.
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BOLD impulse response model, or do not account for nonstationa-
rities such as habituation effects. The first-level errors then capture
large amounts of signal and are artificially inflated. We shall
therefore stress the importance of accurate within-subject models.

Finally, some guidelines for choosing a test statistic are useful,
given that only one test is authorized in theory. The method
presented in the Method section determines a unique test statistic
according to the following three criteria: (i) themodel for the random
effect’s PDF: parametric or nonparametric; (ii) the location
parameter of interest: mean, median, mode, etc. (although we noted
earlier that all location parameters are equivalent under the
symmetry assumption underlying the sign permutation mechanism);
(iii) the type of test statistic: parameter estimator or likelihood ratio.
Regarding (i), we prefer nonparametric models for their potential to
accommodate non-Gaussian populations. Regarding (ii), we choose
the mean as it is clearly the most commonly used location parameter.
Finally, as discussed above, the scale invariance property of the
likelihood ratio makes it suitable for spatially uniform thresholding.
We therefore recommend the MFX–ELR (10) as a default test
statistic.

Case study: FIAC’05 dataset

The Functional Imaging Analysis Contest (FIAC) dataset
(Dehaene-Lambertz et al., 2006a) served as a comparative
benchmark for various fMRI analysis methods in a workshop
held in Toronto, 2005, at the 11th Meeting of the Organization for
Human Brain Mapping. Results were reported in a special issue of
the Human Brain Mapping journal (Poline et al., 2006). The
experiment exploited sentence repetition and involved 15 partici-
Table 1
Sentence×Speaker interaction (FIAC'05 dataset)

Statistical test Cluster-level
PFWE-corr

Cluster size
(voxels)

Pe
PF

Parametric t test (SPM) 0.13 24 0.7
Permutation t test 0.09 25 0.2
Permutation ELR 0.13 20 0.4
Permutation MFX–GLR 0.02 97 0.0
Permutation MFX–ELR 0.01 111 0.0

Comparison of P-values corrected for the family-wise error rate, for the biggest clu
P=0.01 uncorrected. The computation times are given for a standard PC, 2.80 GH
pants who were asked to listen carefully to sentences from “The
Three Little Pigs” read by different speakers. The experimental
design was 2×2 factorial, with sentence type as the first factor
(same vs. different) and speaker type as the second factor (same vs.
different), and included two block-related sessions. Data were
acquired on a Bruker 3 T scanner.

We performed one-sided permutation tests combined with each
of the following four statistics: the t statistic, the standard empirical
LR statistic (ELR) and their respective MFX-corrected versions.
Note that the results of the test using the MFX–GLR statistic were
reported in the same issue (Mériaux et al., 2006b). Analyses were
performed from first-level summary statistics produced by SPM2
(after 5×5×5 mm3 FWHM spatial Gaussian smoothing), and were
restricted to amanually segmentedmask of 2920 voxels surrounding
the perisylvian areas. In order to save computation time, all tests
were performed usingN=10,000 random independent permutations
rather than 215=32,768 exhaustive permutations. The randomiza-
tion introduces a standard error on any P-value (corrected or
uncorrected) of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðP � P2Þ=Np
V1=2

ffiffiffiffi
N

p ¼ 0:005. Finally, each test
was thresholded for a 1% false positive rate (P=0.01 uncorrected) in
order to obtain comparable activation maps.

When comparing the standard statistics with their MFX-
corrected counterparts, we observe that the local maxima have
similar locations in the respective maps, but the clusters detected
under MFX correction are significantly bigger in the sense that
they have smaller corrected cluster-level P-values. A contrast of
special interest is the Sentence×Speaker interaction, for which
both MFX statistics detect a significant cluster in the right
superior temporal sulcus (STS), as shown in Fig. 4 and Table 1.
The same cluster falls short of significance using the tests based
ak voxel-level

WE-corr

Peak position (mm) Time/perm
(s)

x y z

0 60 −12 −3 –
8 60 −12 −3 0.01
4 60 −9 −3 0.01
4 60 −12 −3 0.03
4 60 −12 −3 2.97

ster found in the right superior temporal sulcus after thresholding each test at
z single processor running Linux.



Fig. 5. Sentence×Speaker interaction (FIAC'05 dataset). Histograms of the maximum statistic over the search volume, Tmax (left) and the maximum cluster size,
Smax (right), respectively for the MFX–ELR (bars) and the MFX–GLR (solid lines).
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on either the standard t statistic, or the ELR, which confirms the
improved detection power achieved by MFX correction on the
FIAC’05 dataset.

These experiments also suggest that the MFX–ELR does not
sacrifice the detection performances of its parametric version, the
MFX–GLR, which is consistent with the simulations (see Fig. 3).
On each contrast we tested, the activation maps were similar, both
qualitatively and in terms of significance; see the histograms of
maximum statistics over the search volume in Fig. 5. While this
trend has no reason to generalize to all datasets, it suggests that the
across-subject distributions of the contrasts are fairly normal in this
study. Yet we anticipate that substantial differences between the
two MFX statistics could be seen in strongly inhomogeneous
populations.

In our implementation, the MFX–ELR is about 100 times slower
than the MFX–GLR, which reflects the respective computational
costs of the associated EM algorithms. In this example, the
permutation test using the MFX–ELR took about 8 h, compared to
6 min using the MFX–GLR. We do not consider this computation
time prohibitive as it remains negligible compared to the time
required to design an fMRI experiment and acquire a complete
group dataset. Also note that permutation tests are easy to
parallelize.
Conclusion

This work is an attempt to boost the detection power of
massively univariate random-effect analyses. Random-effect
analyses in fMRI call for MFX models, since BOLD effects
cannot be observed exactly from the scans. Standard t (and F)
statistics may be interpreted in MFX context as corresponding to a
homoscedastic two-level Gaussian model. We have investigated a
more flexible model accounting for heteroscedasticity and relaxing
normality at the between-subject level, from which new test
statistics maybe derived that are potentially more sensitive at the
expense of heavier computations. Those statistics may be
combined with permutation tests to enable exact specificity control
under a symmetry assumption regarding the across-subject
distribution of the effects.
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Appendix A. A practical likelihood maximization

We detail here two EM algorithms used to maximize the
likelihood function given by Eq. (4), respectively on the Gaussian
family and on the space of all PDFs on R. EM algorithms are a
class of iterative techniques for likelihood maximization that are
guaranteed to increase the likelihood value on each iteration
(Dempster et al., 1977). These two algorithms may be seen as
special cases of a more general EM algorithm that models the
random effect’s PDF as a mixture of Gaussians and considers the
true effects and the class labels as missing data.

A.1. EM algorithm for a Gaussian population

In this case, F is the Gaussian family so that the random
effect’s PDF f is parameterized by its mean μf and standard
deviation σf. The algorithm iteratively refines initial estimates μ̂f
and σ̂ f by alternating two steps, the E-step (expectation) and the
M-step (maximization). In our implementation, the initial estimates
are respectively taken as the classical sample mean and sample
standard deviation of the observed effects (β̂1, β̂2, …, β̂n).

E-step. Assume current estimates are exact, and compute the
posterior joint PDF of all subject’s true effects. Since the subjects
are conditionally independent, this reduces to computing each
subject’s posterior, p(βi|β̂i, σi, μf, σf) which is a Gaussian with
parameters (mi, si):

mi ¼ ̂r2f
r2i þ r̂2f

̂bi þ
r2i

r2i þ r̂2f
̂μf ; si ¼ ri ̂rfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2i þ r̂2f

q

M-step. Update (μ̂f, σ̂f) by maximizing the expected log-likelihood
of the complete data:

Qðμf ;rf Þ ¼ nlog
ffiffiffiffiffiffi
2p

p
rf þ 1

2r2f

X
i

s2i þ μf � mið Þ2
h i

;

yielding:

̂μf ¼
1
n

X
i

mi; ̂r2f ¼
1
n

X
i

s2i þ μ̂f � mið Þ2
h i
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In the constrained problem of maximizing likelihood subject to
μf =0, the algorithm is identical except that μ̂ f is frozen to zero in
the M-step. In practice, we perform five EM iterations, which
proves generally sufficient to achieve good precision on the
ensuing test statistics.

A.2. EM algorithm for a general population

In this case, F is the space of all PDFs on R. It is then proved in
Lindsay (1983) that the maximum likelihood PDF is necessarily a
mixture of n or less Dirac masses:

f ðbÞ ¼
Xn
k¼1

wkdðb� zkÞ;

which amounts to saying that each observation β̂ i is drawn from an
unobserved class k(i). In practice, we initialize the EM algorithm
with uniform mixing proportions and support points coinciding
with the observations (corresponding to the maximum likelihood
PDF under exact observations).

E-step. Given the PDF parameters, we compute the posterior
probability qik of class label k for subject i, yielding:

qik ¼
ŵkɡ i ̂bi � ̂zk

� �
P

k V ̂wk Vɡ i
̂bi � ̂zk V

� �

M-step. Given the posterior probabilities qik, we form the negated
expected complete-data log-likelihood:

Qðw;zÞ ¼
X
i;k

qik log
ffiffiffiffiffiffi
2p

p
ri þ

̂bi � zk
� �2

2r2i
� log wk

2
64

3
75

This criterion is to be minimized subject to the constraint that
the mixing proportions sum up to one, and possibly that the mean
population effect vanishes. We therefore consider the Lagrangian:

Lðw; z;k0; k1Þ ¼ Q w; zð Þ þ k0

�X
k

wk � 1

�
þ k1

�X
k

wkzk

�
;

whose derivatives read:

AL
Awk

¼ � 1
wk

X
i

qik þ k0 þ k1zk ;

AL
Azk

¼
X
i

qik
r2i

zk � ̂bi
� �

þ k1wk

When no mean constraint is applied, so that λ1=0, the M-step
yields an explicit updating rule. We easily get λ0=n, then:

ŵk ¼ 1

n

X
i

qik ; ̂zk ¼ 1

Sk

X
i

qik
r2i

̂bi with Sk ¼
X
i

qik
r2i

Constrained M-step. When maximizing likelihood subject to the
zero mean constraint, the Lagrange multiplier λ1 becomes a free
parameter. In this case, there is no explicit solution to the M-step. A
possibility is to recast the joint constrained minimization w.r.t. w
and z as sequential constrained minimizations:

• Along w (at fixed z). We, again, find that λ0=n, and:

̂wk ¼
1
n

P
i qik

1þ k1zk

We then solve for λ1 by writing the zero-mean constraint,
leading to a weighted version of the standard empirical
likelihood equation (Owen, 2001), whose solution generally
exists uniquely, and can be found using a Newton algorithm.
The only exception is when all the support points have the same
sign, in which case no solution exists and we simply leave the
mixing proportions unchanged until the next iteration.

• Along z (at fixed w). We easily get the following implicit
equation:

̂zk ¼ 1
Sk

X
i

qik
r2i

̂bi � k1wk

 !
;

(with Sk like in the unconstrained case) which becomes explicit
after expressing the zero-mean constraint and solving the
resulting linear equation for λ1.

In practice, we do not iterate the alternate minimization,
meaning that, in the constrained case, our algorithm is actually an
EM variant known as the expectation conditional maximization
(ECM) algorithm (Meng and Rubin, 1993), which maintains the
essential property that the likelihood value increases on each
iteration.
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