
I 

559 I € € €  TRANSACTIONS O N  SYSTEMS, MAN, A N D  C‘YBEKNETICS, VOL. 20. NO. 3, MAY/JUNE 1990 

Generalizing the Dempster- S hafer 
Theory to Fuzzy Sets 

Absfracf -With the desire to manage imprecise and vague informa- 
tion in evidential reasoning, several attempts have been made to gener- 
alize the Dempster-Shafer (D-S) theory to deal with fuzzy sets. How- 
ever, the important principle of the D-S theory, that the belief and 
plausibility functions are treated as lower and upper probabilities, is no 
longer preserved in these generalizations. A generalization of the D-S 
theory in which this principle is maintained is described. It is shown 
that computing the degree of belief in a hypothesis in the D-S theory 
can be formulated as an optimization problem. The extended belief 
function is thus obtained by generalizing the objective function and the 
constraints of the optimization problem. To combine bodies of evidence 
that may contain vague information, Dempster’s rule is extended by 
1) combining generalized compatibility relations based on the possibility 
theory, and 2) normalizing combination results to account for partially 
conflicting evidence. Our generalization not only extends the application 
of the D-S theory but also illustrates a way that probability theory and 
fuzzy set theory can be integrated in a sound manner in order to deal 
with different kinds of uncertain information in intelligent systems. 

I .  INTRODUCTION 

VIDENTIAL REASONING, which is the task of E inferring the likelihood of some hypotheses by col- 
lecting and combining relevant evidence for or against 
these hypotheses, is central to many computer systems 
that help users in decisionmaking, diagnosis, pattern 
recognition, and speech understanding. The problem of 
evidential reasoning is complicated by information being 
conveyed by a piece of evidence is often not only uncer- 
tain, but also imprecise, incomplete, and vague. For ex- 
ample, a sensor’s output may indicate that a flying object 
is about 50 miles from Los Angeles and that it belongs to 
a general class of missiles. But the sensor gives no. further 
information about the specific type of the missile. There- 
fore, an evidential reasoning mechanism that can cope 
with all these different kinds of uncertainties in a sound 
manner is highly desirable. 

Previous work on evidential reasoning has been largely 
based on three theoretical frameworks: the Bayesian 
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probability theory, the Dempster-Shafer (D-S) theory of 
evidence, and the fuzzy set theory. These frameworks 
differ in their strengths and weaknesses. The Bayesian 
probability theory has a well-developed decision-making 
theory, but it requires precise probability judgments. 
Hence, it is weak in representing and managing imprecise 
information. To cope with this weakness, a Bayesian 
approach often needs to transform a piece of imprecise 
evidence into a precise one by using additional assump- 
tions [l]. The D-S theory is based on probability theory, 
yet it allows probability judgments to capture the impre- 
cise nature of the evidence. As a result, degrees of likeli- 
hood are measured by probability intervals, as opposed to 
point probabilities in the Bayesian approaches. One of 
the weaknesses of the D-S theory is that its decision 
theory is still a research topic [ 2 ] .  The fuzzy set theory 
focuses on the issue of representing and managing vague 
information such as “the temperature is high” or “the 
missile is about 50 miles from Los Angeles.” One of its 
strengths is its possibility theoly as a foundation for deal- 
ing with imprecise data. Although the fuzzy set theory is 
still somewhat controversial at this point, it has been used 
successfully to solve many complex real-world problems. 
For example, Hitachi has used fuzzy control to develop an 
automatic train operation system for Sendai’s municipal 
subway [3]. 

In this paper, we describe an approach that addresses 
the issue of managing imprecise and vague information in 
evidential reasoning by combining the D-S theory with 
the fuzzy set theory. Although several researchers have 
extended the D-S theory to deal with vague information 
[4]-[7], their extensions have not been able to preserve an 
important principle in the D-S theory: that the belief and 
the plausibility measures are lower and upper probabili- 
ties. Viewing this, we generalize the D-S theory in a way 
that preserves this principle, We achieve this by first 
generalizing the fundamental constructs of the theory and 
then deriving other extensions to the theory from these 
generalizations. The primitive constructs that have been 
generalized are 1) the compatibility relation, which relates 
the evidence to the hypotheses, and 2 )  the objective 
function and the constraints of the optimization problem, 
which compute the belief and the plausibility functions. 
From these generalized basic components, we derive the 
belief function, the plausibility function, and the rule of 
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combination for the generalized theory of evidence. Fi- 
nally, we discuss the relationship between Shafer’s conso- 
nant support functions and the possibility distributions 
based on our generalized framework. 

11. THE PROBLEM 

The problem we want to solve in this paper can be 
described as follows. Suppose X and Y are two variables 
that take their possible values from two spaces, S and T ,  
respectively. The space S is an evidence space that con- 
sists of a set of mutually exclusive and exhaustive eviden- 
tial elements. The space T is a hypothesis space that is 
formed by a set of mutually exclusive and exhaustive 
hypotheses. A body of evidence for the hypothesis space 
T is constituted by (1) a set of rules that associate 
evidential elements to hypotheses in the form of 

IF  X = s, THEN Y is A ,  
where si is an evidential element and A ,  is a fuzzy subset 
of T ,  and (2) a probability distribution of the evidence 
space S. Our objective is to answer questions like “What 
is the likelihood that Y is B given a collection of bodies 
of evidence?” where B is a fuzzy subset of T.  

To illustrate this, let us consider a computer system 
that infers the age of a person based on various informa- 
tion about the person. Such a system may contain two 
bodies of evidence, one regarding the boldness of the 
person, the other about whether he/she likes punk rock. 
The rules for these two bodies of evidence are listed 
below. 

IF the person is bold, THEN his age is NOT YOUNG. 
IF the person is not bold, THEN his age is UNKNOWN. 

IF  the person likes punk rock, THEN his age is YOUNG. 
IF the person does not like punk rock, THEN his age is 
UNKNOWN. 

where not young and young are fuzzy subsets of the 
interval [0, 1001. Suppose the system is given the following 
probability judgments about a person named John: 

P(bo1d) = 0.8, 
P(1ikes punk) = 0.4, 

P h o t  bold) = 0.2, 
P(does not like punk) = 0.6. 

The system is asked to determine how likely it is that 
John is a middle-aged person. 

The important characteristic about the problem being 
considered here is that it contains both probabilistic infor- 
mation and vague information (e.g., young, middle-aged ). 
The Dempster-Shafer theory has been shown to solve a 
special case of this problem where A ,  and B are crisp 
sets [4]. Hence, we will briefly describe the basics of the 
D-S theory before we discuss previous work and our 
approach in generalizing the theory. 

111. BASICS OF THE DEMPSTER-SHAFER THEORY 

The Dempster-Shafer theory originated from the con- 
cept of lower and upper probability induced by a multival- 
ued mapping [8]. Glenn Shafer further extended the the- 
ory in his book [9]. 

A multivalued mapping from space S to space T associ- 
ates each element in S with a set of elements in T ,  i.e., 
r: S + 2T. The image of an element s in S under the 
mapping is called the granule of s, denoted as G(s). The 
multivalued mapping can also be viewed as a compatibility 
relation between the spaces S and T .  A compatibility 
relation C between S and T characterizes the possibilistic 
relationship between their elements. An element s of S is 
compatible with an element t of T if it is possible that s 
is an answer to S and t is an answer to T at the same 
time [lo] and the granule of s is the set of all elements in 
T that are compatible with s. 

G ( S )  = { t ( t  E T ,  sCt } . 

Given a probability distribution of space S and a com- 
patibility relation between S and T ,  a basic probability 
assignment (BPA) of space T ,  denoted by m: 2T+ [O, 11, 
is induced:’ 

where the subset A is also called a focal element. 
The probability distribution of space T ,  which is re- 

ferred to as the frame of discernment, is constrained by the 
basic probability assignment, but in general, it is not 
uniquely determined by the BPA. The belief measure 
and the plausibility measure of a set B are, respectively, 
the lower probability and the upper probability of the set 
subject to those constraints. These two quantities are 
obtained from the BPA as follows: 

b e l ( B ) =  m ( A )  ( 2 )  
A c B  

P I S ( B ) =  m ( A ) .  ( 3 )  
A n B i d  

Hence, the belief interval [bel(B), Pls(B)] is the range of 
B’s probability. 

An important advantage of the D-S theory is its ability 
to express degrees of ignorance. In the theory, the com- 
mitment of belief to a subset does not force the remaining 
belief to be committed to its complement, i.e., bel( B)  + 
bel(B‘)< = 1. The amount of belief committed to nei- 
ther B nor B’s complement is the degree of ignorance. 
Consequently, the theory provides a framework within 
which disbelief can be distinguished from a lack of evi- 
dence for belief. 

If m ,  and m 2  are two BPA’s induced by two indepen- 
dent evidential sources, the combined BPA is calculated 

‘If we assume that r does not map any element of the space E to the 
empty set, the denominator (i.e., the normalization factor) in 1)  becomes 
one. 

1 -- 1 
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according to Dempster’s rule of combination: Based on Zadeh’s expected certainty, Ishizuka and 
Yager arrive at different inclusion measures by using 
different implication operators in fuzzy set theory. Ogawa 
uses relative sigma count, which is analogous to condi- 

1- c m , ( A , ) m , ( B , ) .  tional probability in spirit, to compute the degree of 
inclusion. 

In order to combine two mass distributions with fuzzy 
focal elements, Ishizuka extended Dempster’s rule by 
taking into account the degree of intersection of two sets, 

A ,  n c E, = c m , ( A , ) m , ( B , )  

m,@m,(C)  = (4) 
A , n B , = b  

The basic combining steps that result in Dempster’s rule 
are discussed in Section V-F. 

IV. PREVIOUS WORK J ( A ,  B).  

Zadeh was the first to generalize the Dempster-Shafer 

information granularity and the theory of possibility [4], 

restriction that acts as an elastic constraint on the values 
of a variable [ 121, [ 131. Zadeh first generalized the granule 
of a D-S compatibility relation to a conditional possibility 
distribution. Then he defined the expected certainty, de- 
noted by EC(B) ,  and the expected possibility, denoted by 

theory to fuzzy sets, based on his work on the concept of 

[ll].  A possibility distribution, denoted by II, is a fuzzy 

c J ( A , , B , ) m , ( A , ) m * ( B , )  

1 - c (1- J ( A , B , ) ) m , ( A , ) m , ( B , )  

A ,  n E ,  = C 
(8) m,@m,(C) = 

1 3 1  

where 

ElI (B) ,  as a generalization of D-S belief and plausibility 
functions: m1n [max,P,(x)> maxxPB(X)l . 

maxx[P,,B(x)I 
J ( A , B ) =  . 

E I I ( B )  = C m ( A , ) s u p ( B n A , )  
1 

EC( B )  = Em( A , )  inf( A ,  - B )  = 1 - E ~ I (  B‘) 

where A, denotes fuzzy focal elements induced from 
conditional possibility distributions, sup(B n A , )  mea- 
sures the degree that B intersects with A,,  andinf(A - 
B )  measures the degree to which A, is included in B. It is 
easy to verify that the expected possibility and the ex- 
pected certainty reduce to the D-S belief and plausibility 
measures when all A ,  and B are crisp sets. 

Following Zadeh’s work, Ishizuka, Yager, and Ogawa 
have extended the D-S theory to fuzzy sets in slightly 
different ways [5]-[7]. They all extend D-S’s belief func- 
tion by defining a measure of inclusion I ( A  c B ) ,  the 
degree to which set A is included in set B ,  and by using 
the following formula, similar to Zadeh’s expected cer- 
tainty EC(B).  

1 

bel ( B )  = I (  A c B ) m (  A , )  
A ,  

Their definitions of the measures of inclusion are listed as 
follows. 
Ishizuka: 

. ( 5 )  
minx[ 1 9 1  + ( C L B ( 4  - CL,4(-4)1 

max,/L,(x) 
11( A c B )  = 

Yager: 

IY( A = B )  = minx[ P X (  x) v PB( 43 . (6) 
Ogawa: 

There are four problems with these extensions. First, 
the belief functions sometimes are not sensitive to signifi- 
cant changes in focal elements because degrees of inclu- 
sion are determined by certain “critical” points due to the 
use of “min” and “max” operators. Second, the defini- 
tions of “fuzzy intersection operator” and “fuzzy inclu- 
sion operator” are not unique. Consequently, it is difficult 
to choose the most appropriate definition for a given 
application. Third, although expected possibility and ex- 
pected certainty (or, equivalently, expected necessity) de- 
generate to Dempster’s lower and upper probabilities in 
the case of crisp sets, it is not clear that this is a “neces- 
sary” extension. Fourth, the generalized formula for com- 
bining evidence is not well justified. 

V. OUR APPROACH 

Instead of directly modifying the formulas in the D-S 
theory, we generalize the primitive constructs of the the- 
ory and derive other extensions to the theory from these 
generalizations. We first generalize the compatibility rela- 
tion in the D-S theory to a joint possibility distribution. 
Then, we formulate the linear programming problems 
that compute the belief measures and the plausibility 
measures. By extending the objective function and the 
constraints of the optimization problem, we obtain the 
formula for computing belief function in the generalized 
framework. We also extend Dempster’s rule of combina- 
tion by generalizing its steps in 1) combining the compati- 
bility relations and 2) normalizing the combination result 
to account for the partial conflict between pieces of 
evidence. Finally, we achieve the commutativity of the 
extended Dempster rule by postponing its normalization 
step. 



- 

562 

I 

IEEE T R A N S A C T I O N S  O N  SYSTTMS.  MAN.  ,\NI> C’YBFKNETIC‘S, VOL.. 20, N O .  3 ,  M A Y / J U N E  1990 

A. Generalizing the Compatibility Relation to a 
Possibility Distribution 

In the Dempster-Shafer theory, the compatibility rela- 
tion is limited to black-and-white answers. For example, 
given the question of whether s and t could be answers to 
S and T respectively, the compatibility relation may record 
only that the given situation is completely possible (i.e., 
( s , t )  is in the relation C) or completely impossible (i.e., 
(s, t )  is not in C ) .  In general, however, the possibility that 
both s and t are answers to S and T is a matter of 
degree. To cope with this, we generalize Shafer’s compat- 
ibility relation to a fuzzy relation that records joint possi- 
bility distribution of the spaces S and T .  

Definition 1: A generalized compatibility relation be- 
tween the spaces S and T is a fuzzy relation C : 2 S x T - -  
[O, 13 that represents the joint possibility distribution of 
the two spaces, i.e., 

C ( s , t )  = n x , v ( s , t )  
where X and Y are variables that take values from the 
space S and the space T ,  respectively. 

Shafer’s compatibility relation is a special case of our 
fuzzy relation in which possibility measures are indicated 
by either zeros or ones. 

In fuzzy set theory, if the relationship of two variables 
X and Y is characterized by a fuzzy relation R and the 
value of variable X is A ,  the value of variable Y can be 
induced using the composition operation, which is defined 
as: 

l l . A . R ( y ) = m a x ( m i n [ C L A ( X ) ,  p R ( x , Y ) ] }  

So, we use the composition rule to generalize the defini- 
tion of granule. 

Definition 2: Given a generalized compatibility relation 
C:2SxT-+[0,1], the granule of an element s of S ,  de- 
noted as G(s) ,  is defined to be the composition of the 
singleton Is) and C, which turns out to be the possibility 
distribution conditioned on s, i.e., 

G(s) = {s} 0 C = n(yIx=s). 
Hence, we generalize granules to conditional possibility 

distributions just as Zadeh did; however, our approach is 
more general than Zadeh’s approach because we go one 
step further to generalize the compatibility relation to a 
joint possibility distribution. As we will see in Section 
V-F, the generalized compatibility relation is important 
for justifying our generalization of Dempster’s rule. 

Given a probability distribution of the space S and a 
joint possibility distribution between space S and space T 
such that the granules of S’s elements are normal fuzzy 
subsets,2 a basic probability assignment (BPA) m to T is 
induced using equation 1. Adopting the terminology of 
the D-S theory, we call a fuzzy subset of T with nonzero 

’A fuzzy subset A is normal if sup,/.~.,(x) = 1 .  The assumption that all 
focal elements are normal is further discussed in Section V-F-2). 

basic probability a f u z q  focal element. A fuzzy basic 
probability assignment (BPA) is a BPA that has at least 
one fuzzy focal element. 

B. The Optimization Problem for Computing the 
Belief Function 

As a basis for the following discussions, this section 
formulates the linear programming problems implicitly 
solved by the belief function. This serves as a foundation 
upon which we can generalize various basic components 
of the optimization problem (e.g., the objective function, 
the constraints) that correspond to basic concepts under- 
lying the belief function. 

Pls(B) and bel(B) are the upper and lower probabili- 
ties of a set B under the constraints imposed by a basic 
probability assignment. Therefore, the belief function can 
be obtained by solving the following optimization prob- 
lem: 

LPI-min Crn(x,: A , )  
x , E B  I 

subject to the following constraints: 

r n ( x , :  A , ) ~ o ,  r = l ; . . , n ;  j = 1 ; . . , 1  (9)  

m(x , :  A , )  = 0 ,  Vx, E A,  ( 10) 

C r n ( x , :  A , ) = m ( A , )  j = 1 ; . .  3 1. (11) 
I 

The variable rn (x , :  A , )  denotes the probability mass 
allocated to x ,  from the basic probability of a focal 
element A,. The objective function simply computes the 
total probability of the set B where the inner summation 
gives the probability of an element x,. The inequality 
constraint, specified by (9), states the nonnegativity of 
probability masses. Equation (10) prohibits the basic 
probability of a focal from being assigned to any elements 
outside the focal. Equation (11) expresses that all the 
probability mass assigned by a focal should add up to its 
basic probability. It follows, from (9) and (11), that the 
upper bound on m(x, :  A , )  is m(A,) .  

Since the distributions of focals’ masses do not interact 
with one another, they can be optimized individually to 
reach a global optimal solution. Hence, we partition the 
linear programming problem LP1 into subproblems, each 
one of which concerns the allocation of the mass of a 
focal element. The optimal value of the original problem 
LP1 is the sum of the subproblems’ solutions. A subprob- 
lem for LP1 is formulated as follows: 

LPI,-min m ( x , :  A , )  
x, E B 

subject to the following constraints: 

r n ( x , :  A , ) > O  

m ( x , :  A , ) = O  x , @ A ,  

C r n ( x , :  A , )  = m ( A , ) .  
I 

1 1 
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The linear programming problem for computing the 
plausibility of set B differs only in the direction of opti- 
mization. It is formulated as LP2 as follows: 

LP2-max C m ( x , :  A,) subject to (9)-( 11). 
x , E B  I 

Like LP1, the linear programming problem LP2 can be 
partitioned into 1 subproblems, each of which finds an 
optimal distribution of a focal’s mass to make a maximum 
contribution to the belief in B .  

The optimal solutions of the minimization subproblem 
LP1, and the maximization subproblem LP2, are denoted 
as m,(B: A,) and m*(B: A, )  respectively. Adding the 
optimal solutions of subproblems, we get B’s belief mea- 
sure and plausibility measure as shown below. 

b e l ( B ) =  m , ( B : A , ) .  (12) 
A , c T  

PIS(B)  = m*(B:  A, ) .  (13) 
A , L T  

It is easy to show that the optimal solutions of the 
subproblems are the following: 

( 14) 
( ; ( A j )  if A,  c B 

otherwise 
m , ( B :  A , ) =  

. (15) 
m*(B:  A ~ )  = ( ; ( A j )  i f A j n B # 4  

otherwise 

Equations (2) and (31, the formulas for calculating D-S 
belief and plausibility, thus follow directly from (121415). 

C. Generalizing Objective Functions 

Philippe Smets has shown that the belief measure of a 
fuzzy set B, given a nonfuzzy basic probability assign- 
ment, can be obtained by computing the lower bound on 
the expected value of B’s membership function [141. Here 
we show that the same result can be obtained by modify- 
ing the objective functions of the optimization problems, 
discussed in Section V-B, to account for the membership 
degree of the fuzzy set B. 

The objective function of LP1 and LP2 computes the 
probability of a crisp set B. If B is a fuzzy subset of the 
frame of discernment, its probability is defined as 

P ( B )  = C P ( x , ) x ~ B ( x i )  
x ,  

in fuzzy set theory. We can thus generalize the objective 
function to 

Aj)XpB(xi ) .  
x, i 

Based on this generalization of the objective functions 
and the following theorem, we get the belief function of 
fuzzy sets for a nonfuzzy basic probability assignment. 

Theorem 3: Suppose A is a nonfuzzy focal element. 
The maximum and minimum probability masses that can 
be allocated to a fuzzy set B from A are 

m , ( B :  A ) = m ( A ) x  inf p B ( x )  (16) 

m*( B : A )  = m( A )  x sup pB( x )  . (17) 

X E A  

 EA 

Proof m*(B:  A )  is the optimal solution to the follow- 
ing linear programming problem: 

min E m (  x :  A )  x pB( x )  
X 

subject to the following constraints: 

m ( x :  A )  > O  

m ( x :  A ) = O  V x P A  

C m ( x :  ~ ) = r n ( A ) .  

An optimal solution of this simple linear programming 
problem can be obtained by assigning all the mass of A to 
an element of A that has the lowest membership degree 
in B. Thus, we have m,(B:  A ) =  m(A)XinfXEApB(x) .  
Equation (17) can be proved in a similar way. 

From (121, (13), (161, and (171, we obtain the following 
formula for computing the belief and plausibility of fuzzy 
sets from a crisp basic probability assignment: 

X 

bel( B )  = m ( A , )  X inf p B ( x )  
x E A, A , C T  

PIS( B )  = m ( A , )  x SUP p B ( x ) .  
A , C T  x E A, 

Thus, we have shown that Smets’ generalization of the 
D-S belief function is a result of generalizing the objec- 
tive function of the optimization problem that the belief 
function is solving. 

D. Representing the Probabilistic Constraints of Fuzzy Focal 
Elements Through Decomposition 

To deal with fuzzy focal elements, we decompose them 
into nonfuzzy focal elements whose probabilistic con- 
straints have been discussed in Section V-B. A fuzzy focal 
element has two components: a fuzzy subset of the frame 
of discernment and the probability mass assigned to the 
subset. In this section, we first describe how a fuzzy set 
can be decomposed into nonfuzzy sets. Then we define 
the decomposition of a fuzzy focal element. 

An a-level set of A, a fuzzy subset of T ,  is a crisp set 
denoted by A,  that comprises all elements of T whose 
grade of membership in A is greater than or equal to a: 

A, = {xlPA(x) 4 
A fuzzy set A may be decomposed into its level-sets 
through the resolution identity 11-53: 

A = C a A ,  
a 
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where the summation denotes the set union operation 
and aA, denotes a fuzzy set with a two-valued member- 
ship function defined by 

p a A J x )  = a for x E A, 

p,,,Jx) = 0 elsewhere. 

The importance of resolution identity is best described by 
Zadeh [15]: “The resolution identity provides a conve- 
nient way of generalizing various concepts associated with 
nonfuzzy sets to fuzzy sets” [lS]. In fact, this is the 
underlying basis for many of the definitions of fuzzy set 
operations [ 161, [ 171. 

In order to decompose a fuzzy focal element, we also 
need to decompose the focal’s basic probability and dis- 
tribute it among the focal’s level-sets. Obviously, the 
decomposition has to satisfy two conditions: 

The decomposed basic probabilities must add up to 
the basic probability assigned to the fuzzy focal. 

C m ( A , )  = m ( A )  
a 

The decomposed basic probabilities must not be 
negative. 

m( A,) 2 0. 

Using Dubois and Prade’s observation on the relationship 
between Possibility distribution (i.e., membership function 
of a fuzzy focal) and nonfuzzy consonant focals [18], we 
reach a decomposition of the fuzzy focal’s basic probabil- 
ity that satisfies the two conditions stated above. 

Dubois and Prade have shown that if a BPA is a set of 
nested focal elements, A ,  3 A, .  . . XI A,, they can be 
related to the possibility distribution induced, denoted as 
POSS(X), as ~ O I I O W S : ~  

m ( A , ) = n - / - n - / - ,  (18) 

where rTT, = inf,, A,  poss(x), T” = 0, and n-, = 1. This re- 
sult can be directly applied to decompose a fuzzy focal 
element whose basic probability value is one (i.e., m ( A )  = 

1) because the a-level sets of A form a set of nested focal 
elements. Since inf,,.” poss(x) = a / ,  the T, in (18) be- 
comes the alpha value & /  of the level sets. Thus, we get 

m ( A , , )  = a ,  - a,- , .  ( 19) 

We extend this idea to decompose fuzzy focal elements 
with arbitrary probability mass (i.e., 0 < m ( A )  < 1) by 
multiplying the focal’s mass with the right-hand side of 
(19). Formally, the decomposition of a fuzzy element is 
defined as follows. 

Definition 4: The decomposition of a fuzzy focal ele- 
ment A is a collection of nonfuzzy subsets such that 
1) they are A’s a-level sets that form a resolution identity, 

‘We have paraphrased Dubois and Prade’s results for the conve- 
nience of our discussion. 

and 2) their basic probabilities are 

m ( ~ , , ) = ( a , - a , - , ) ~ m ( A )  i = 1 , 2 ; . . , n  (20) 

where a,, = 0 and a,  = 1. 

When the focal element is a crisp set, its decomposition is 
the focal itself because the decomposition contains only 
one level set, which corresponds to the membership de- 
gree “one.” The relationship between the decomposition 
of a fuzzy focal element and Shafer’s consonant focals is 
discussed further in Section VI-A. 

The probabilistic constraint of a fuzzy focal is defined 
to be that of its decomposition, which is a set of nonfuzzy 
focals. Since we already know how to deal with nonfuzzy 
focals, decomposing a fuzzy focal into nonfuzzy ones 
allows us to calculate the belief functions that are con- 
strained by the fuzzy focals. 

Definition 5: The probability mass that a fuzzy focal A 
contributes to the belief (and plausibility) of a fuzzy 
subset B is the total contribution of A’s decomposition to 
B’s belief (and plausibility), i.e., 

m*( B :  A )  = Em*( B :  A,) 

m * ( B :  A )  = C m * ( B :  A , ) .  

(21) 

(22) 

a 

a 

E. Computing the Belief Function 

Based on generalizing the objective function and ex- 
pressing the probabilistic constraints of fuzzy focal ele- 
ments through their decompositions, we are able to derive 
the following formula for computing the belief function 
and the plausibility function. 

P l s ( B ) = C m ( A ) C [ c . u , - a , - , l x  SUP P A X ) .  (24) 
A a, x A“, 

It is also trivial to show that the derived formulas 
preserve the following important property of the D-S 
theory: The belief of a (fuzzy) set is the difference of one 
and the plausibility of the set’s complement. 

1) An Example: The following example illustrates how 
one applies the formula described in Section V-E for 
computing the belief function. Suppose the frame of 
discernment is the set of integers between 1 and 10. A 
fuzzy basic probability assignment consists of two focal 
elements A and C:  

A = (0.25/1,0.5/2,0.75/3,1/4,1/5, 

0.75/6, 0.5/7, 0.25/8} 

C = {0.5/5,  1.6, 0.8/7, 0.4/8) 

where each member of the list is in the form of p A ( x , ) / x , .  
We are interested in the degree of belief and the degree 
of plausibility of the fuzzy subset B :  

B = {0.5/2, 1/3, 1/4, 1/S, 0.9/6,0.6/7,0.3/8}. 

T 7 



I 

565 YEN: GENERALIZING THE DEMPSTER-SHAFER T H E O R Y  TO FUZZY SETS 

The decomposition of fuzzy focal A consists of four TABLE I 
THE CONTRIBUTION TO bel(B) FROM THE FOCAL ELEMENT A 

AND ITS VARIATIONS nonfuzzy focals: 

A,,,zs = {1,2;. . , 8 )  with mass 0 . 2 5 ~  m( A )  Focal Elements Yager Ishizuk Ogawa Yen 

A,,,={2,3;.. ,7) with mass0 .25xm(A)  A 0.5 0.75 0.8962 0.6 

A,,,,,={3,4;..,6) with mass0 .25xm(A)  
A’ 0.5 0.834 0.9119 0.6252 
A“ 0.5 0.75 0.9434 0.5 
A”’ 0.5 1 0.8962 0.675 A ,  = (4,5} with mass 0.25X m( A )  

and the decomposition of fuzzy focal C also consists of 
four nonfuzzy focals: 

CO,, = (5,6,7,8) with mass 0.4X m( C) 

C,,,, = {5,6,7) with mass 0.1X m ( C )  

TABLE I1 
CHANGES TO bel(B) DUE TO CHANCES I N  THE FOCAL ELEMENT A 

Changes of 
Focal Element A Yager Ishizuk Ogawa Yen 

A + A‘ unchanged increased increased increased 
C,,,, = (6,7} with mass 0.3X m( C) A + A” unchanged unchanged increased decreased 

A + A ” ‘  unchanged increased unchanged increased 
C ,  = (6) with mass 0.2X m ( C )  

Let us denote inf, ~ A p B ( x )  as f B ,  ,(a,). So, we have 

m,( B :  A )  
Second, we modify A into A” by increasing the gradient 
of p A ( x )  for 1 G x 6 3 while preserving the membership 

= m ( A ) x [ 0 . 2 5 ~ f ~ , , ( 0 . 2 5 ) + 0 . 2 5 X f ~ , , ( 0 . 5 )  value ~ ~ ( 1 ) :  

+0.25XfB,,(0.75) +0.25xfB, , ( l ) ]  A“=(0.25/1,0.75/2, 1/3, 1/4, 1/5, 
0.75/6, 0.5/7, 0.25/8). 

Finally, we get A”’ by decreasing the membership value 
~ ~ ( 1 )  while maintaining the membership values of other 

A”’ = {O/l, 0.5/2, 0.75/3, 1/4, 1/5, 

= m( A )  x [ 0.25 x 0 + 0.25 x 0.5 + 0.25 x 0.9 + 0.25 x 11 

= 0.6X m( A )  

m , ( B :  C) points: 
= m ( C ) x  [0.4XfB,,(0.4)+0.1xfB,,(0.5) 

+0.3x fB,C(o’8)+o’2x f B , C ( ’ ) ]  

=m(C)X[0.4X0.3+0.1X0.6+0.3x0.6+0.2x0.9] 

= 0.54 x m( C) 

0.75/6, 0.5/7, 0.25/8}. 

Since only the focal element A has been changed, we 
can analyze the impact to the belief function by compar- 
ing the contributions of the focal element A and its 
variations to the degree of belief in B. Table I lists the Thus, we have 

bel ( B )  = 0.6 m( A )  +OS4 m( C) 

Similarly, we can calculate the plausibility of B: 

portion of each modified focal’s mass that contributes to 
B’s belief measure (i.e., the ratio m , ( B :  A) /rn(A))  for 
each fuzzy evidential reasoning method. 

Pls ( B )  = m( A )  +0.86 m( C )  Table i I  shows how bel(5)  computed by different 

2) A Comparison with Alternative Approaches: In this 
section, we will use the example discussed in Section 
V-E-1) to compare our approach with the alternative 
fuzzy evidential reasoning methods discussed in Section 
1V. The degrees of belief in the fuzzy set B computed 
using these methods are listed as follows: 

Ishizuka: bel ( B )  = 0.75 m( A )  +0.8 m( C) . 
Yager: bel ( B )  = 0.5 m( A )  +0.6 m( C ) .  

Ogawa: bel ( B )  = 0.8962 m( A )  +0.434 m( C). 

We will compare how these results are changed in 
response to a change of fuzzy focal element. More specifi- 
cally, we change the membership function of the fuzzy 
focal element A in three different ways. First, we in- 
crease the gradient of p,(x) for 1 < x < 3 while keeping 
pA(2) unchanged. The modified focal element, denoted as 
A’, is 

A ’ =  (0.166/1,0.5/2,0.833/3, 1/4,1/5, 

0.75/6, 0.5/7, 0.25/8}. 

methods change as the focal element A changes in three 
ways. As shown in the table, Yager’s method is insensitive 
to any of the three changes in the focal’s membership 
function; Ishizuka’s method is insensitive to a change 
from A to A”; and Ogawa’s approach is insensitive to a 
change from A to A”‘. Our approach is sensitive to all 
three kinds of changes in the focal’s membership func- 
tion. 

This comparison indicates that previous approaches to 
generalizing the Dempster-Shafer model to fuzzy sets are 
not always responsive to a change of the focal element. In 
general, Ishizuka’s belief function and Yager’s belief 
function are insensitive to a focal element’s change unless 
it results in a change of the “critical point,” a point whose 
membership value is the minimal value in Equation ( 5 )  
and Equation (6) for computing the inclusion measure, 
i.e., 

= min [ l ,  l + ( p B ( x ) - p A ( x ) ) ]  

1 1 
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where x I  and x y  denote the critical points for Ishizuka’s 
inclusion measure and Yager’s inclusion measure respec- 
tively. In our example, the critical points for Yager’s 
inclusion measure I y ( A  c B) and Ishizuka’s inclusion 
measure ZI(A c B )  are x y  = 2 and x I  = 1 respectively. As 
the focal element A changes to A’, the critical point for 
Yager’s inclusion measure remains the same. As a result, 
Yager’s belief measure of the fuzzy subset B remains 
unchanged. Similarly, a change from A to A” does not 
change the critical point x I .  Hence, Ishizuka’s belief 
measure of B remains the same in this case. 

Ogawa’s belief measure of a fuzzy subset B is not 
responsive to a change in the focal element’s membership 
function unless the intersection between the focal and the 
fuzzy subset B is different. Since the intersection A n B 
is the same as A”’n B, Ogawa’s belief measure of B 
remains unchanged when the focal A changes to A”’. 

A surprising result of this comparison is that a change 
from A to A” increases Ogawa’s belief measure, but 
decreases ours. This can be explained as follows. Ogawa’s 
measure of inclusion is based on the sigma count of 
A n B relative to the sigma count of B. Since the inter- 
section of A” and B is a fuzzy superset of the intersection 
of A and B, Ogawa’s measure of inclusion increases as 
the focal change from A to A”. However, our belief 
measure in B decreases because the level set of A” at 
membership degree 0.75 contributes less to the belief 
measure bel(B) than A’s level-set at 0.75 does (i.e., fs,Art 

(0.75) = 0.5 is less than fB,,(0.75) = 0.9) while the contri- 
butions of all other level sets remain the same. 

In summary, the comparison above indicates that our 
method for computing the belief function of fuzzy sets is 
more responsive to any change to a focal element’s mem- 
bership function than previous approaches are. Moreover, 
a change in our belief measure can always be explained in 
terms of a change in the underlying probabilistic con- 
straints imposed by the focal elements. 

F. Generalizing Dempster’s Rule of Combination 

Dempster’s rule combines the effects of two indepen- 
dent evidential sources, denoted as R and S ,  on the 
probability distribution of a hypothesis space, denoted as 
T.  The rule can be viewed as a result of three steps. 

1) Combine the compatibility relations. A combined com- 
patibility relation between the product space R X S 
and T can be constructed from the compatibility rela- 
tion between R and T and the one between S and T 
using the following principle: 

rCt and sCt 3 [ r ,  s]Ct 

where r ,  s, t ,  and [ r , s ]  denote elements of R ,  S ,  T ,  
and R x  S respectively. As a result, the granule of 
[ r ,  s] under the combined multivalued mapping is the 
intersection of the granule of r and the granule of s, 
i.e., 

G ( [ r , s ] )  = G ( r )  n G ( s ) .  (25) 

This explains why focal elements of different eviden- 
tial sources are intersected in Dempster’s rule. 
Compute joint probability distributions of the combined 
evidential source. Since R and S are assumed to be 
independent, the joint probability distribution of the 
space R x S  can be computed from the probability 
distribution of each individual space: 

P( [ r , s l )  = fY.1 x P ( s )  
Normalize the combined basic probability assignment. 
Having obtained the probability distribution of R X S 
and the compatibility relation between R X S and T 
from the two previous steps, Dempster’s rule follows 
directly from (11, which includes a normalization pro- 
cess to discard probability mass assigned to the empty 
set. 

Two generalizations must be made to Dempster’s rule 
before it can be used to combine fuzzy BPAs in our 
generalized framework: 1) the first step above has to be 
extended to allow the combination of fuzzy compatibility 
relations; and 2) the normalization step needs to consider 
subnormal fuzzy focal elements that result from combin- 
ing fuzzy compatibility relations. 

1) Combination of Fuzzy Compatibility Relations: By em- 
ploying the noninteractiveness assumption in possibility 
theory, we generalize equation (25) in order to perform 
fuzzy intersection to obtain granules of the combined 
compatibility relation. A compatibility relation in our 
generalized D-S framework, as discussed in Section V-A, 
is a joint possibility distribution. Thus, we have 

C( r , t )  = n ( r , t )  and C ( s , t )  = n ( s , t )  (26) 
x,z y ,  z 

where X ,  Y ,  and Z are variables that take values from the 
spaces R ,  S ,  and T ,  respectively. Let W be a variable that 
takes values from the space R X S .  The combined fuzzy 
compatibility relation can be expressed as 

Marginal possibility distributions Ilx,z and rIy,z are the 
projection of joint possibility distribution on Y and X 
respectively, [12] i.e., 

n ( r , t )  = max n ( r , s , t ) .  
x, z s X , Y , Z  

Hence, the joint possibility distribution is bounded by the 
marginal possibility distributions: 

n ( r , s , t )  G n ( s , t )  A n ( r , t )  
x, y ,  z y ,  z x, z 

where A denotes the minimum operator. By employing 
the assumption that the variables Y ,  Z and X ,  Z are 
noninteractive, a concept analogous to the independence 
of random variables, we obtain the following joint possi- 
bility distribution: 

I ~- 1 
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Thus, the combined fuzzy compatibility relation is 

C( [ r , s ] , t )  = C( r , t )  A C( s , t ) .  (27) 
For a fixed pair of r and s, applying equation (27) to all 
possible elements in T gives us the following relationship 
between conditional possibility distributions: 

n = n n n  
( Z ( W = [ r , s I )  ( Z j X = r )  ( Z i Y = s )  

where n denotes the fuzzy intersection operator. Equiva- 
lently, the granule of the pair [ r , s ]  under the combined 
compatibility relation defined in (27) is the fuzzy intersec- 
tion of G ( r )  and G(s) :  

G ( [ r , s l )  = G ( r )  n G ( s )  
2) Normalizing Subnormal Fuzzy Focal Elements: An 

important assumption of our work is that all focal ele- 
ments are normal. We avoid subnormal fuzzy focal ele- 
ments because they assign probability mass to the empty 
set. For example, suppose A is a fuzzy subset of the 
frame of discernment {xO, x l ,  x2, x3, x4), characterized by 
the membership function 

A = { O / x O ,  O.l/xl ,  0 . 2 / ~ 2 , 0 . 1 / ~ 3 , 0 / x 4 ] .  
Let the basic probability value of the set A be “a”. The 
decomposition of this focal element A is: 

Ao., = {x l ,  x2,  x3) with mass 0.1 x a 
Ao,* = { x 2 )  with mass 0.1 X a 

A ,  = 4 with mass 0 . 8 ~  a 

In general, the probability mass assigned to the empty set 
by a subnormal fuzzy focal A is the basic probability 
assigned to the decomposed focal of A that is constructed 
from A’s a-level set at the degree of membership one: 

1 - maxp.,( x )  x m( A ) .  
[ x  1 

Although we have assumed that the focal elements of 
fuzzy BPAs  are all normal, the intersections of focals 
may be subnormal. Hence, the combination of fuzzy BPAs 
should deal with the normalization of subnormal fuzzy 
focal elements. To do this, we need to normalize the two 
components of a fuzzy focal element: the focal itself, 
which is a subnormal fuzzy set, and the probability mass 
assigned to the focal. 

It is straightforward to normalize the focal. Suppose A 
is a subnormal fuzzy set characterized by the membership 
function kA(x).  A’s normalized set, denoted as A, is 
characterized by the following membership function. 

where k is the normalization factor 
k = 1/  max pA( x). 

X 

The criterion for normalizing the probability mass of a 
subnormal focal is that the probabilistic constraints im- 
posed by the subnormal focal should be preserved after 
the normalization. Since we use the decomposition of a 

focal to represent its probabilistic constraint, this means 
that the probability mass assigned to a decomposed focal 
should not be changed by the normalization process. 
Since the a ,  cut of the subnormal focal becomes the k a i  
cut of the normalized focal, the probability mass assigned 
to them should be the same: 

From this condition, we can derive the relationship be- 
tween m ( x )  and m ( A )  as follows. The left-hand side of 
(28) can be rewritten as 

m ( A , , ) = m ( A ) ( a , - - , ~ I ) .  

The right-hand side of (28) can be rewritten as 

m ( &a,) = m( x) ( k a ,  - k a ,  - ,  ) = k m( x) ( a ,  - a ,  -, ) . 
It follows from the three equations above that the mass of 
the normalized focal is reduced by a factor reciprocal to 
the ratio by which its membership function is scaled up: 

m( x) = m( A ) / k .  
The remaining mass (1 - l / k ) m ( A )  is the amount as- 
signed to the empty set by the subnormal fuzzy focal and, 
hence, should be part of the normalization factor in the 
generalized Dempster’s rule. 

We summarize our approach to normalize a subnormal 
focal element into three steps: 

a) Scale up the membership function so that its peak 
(i.e., highest membership degree) is one. 

b) Reduce the basic probability using a ratio recipro- 
cal to the scaling factor of the first step. 

c) Assign the basic probability lost during the second 
step to the empty set. 

3 )  A Generalized Rule of Combination: Commutativity is 
an important requirement for any evidence combination 
rule, because it is highly desirable to have the effect of 
the aggregated evidence independent of the order of 
combination. It is well known that Dempster’s rule is 
commutative [9, p. 621. Our normalization step discussed 
in Section V-F-2 is not commutative because it modifies 
the membership functions of the focal elements’ subnor- 
mal intersections. To solve this problem, we first show 
that the normalization process in Dempster’s rule can be 
postponed without changing the combination result. Then, 
we describe our generalized combining rule where the 
normalization process is postponed to achieve commuta- 
tivity. 

Normalization in Dempster’s rule does not have to 
apply after each combining operation. It can be post- 
poned to a later point without changing the result. More 
specifically, several BPA’s in the D-S theory can be 
combined without normalization, and the normalized 
combined bpa can be obtained by applying the normaliza- 
tion process to the unnormalized combined BPA at the 
end. In the following discussion, we use the symbol 8 to 
denote Dempster’s rule without normalization (i.e., the 
denominator in (4) is one), the letter “N” to denote the 

I -- 
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Fig. 1 .  Combination of evidence with immediate normalization. 

m3’ 

Fig. 2. Combination of evidence with postponed normalization. 

normalization process, and the primed letter m’ to denote 
the unnormalized BPA. Fig. 1 and Fig. 2 show two ways 
to apply Dempster’s rule: combine BPA’s with immediate 
normalization, or combine BPAs with postponed normal- 
ization. To show that they obtain the same result, we 
consider three BPA’s of a frame of discernment: m , ,  m2,  
and m3. We want to show that applying normalization 
after the three BPA’s are combined without normaliza- 
tion yields the same result as using Dempster’s rule in the 
conventional way to combine them, i.e., 

(m,@mz) @m3 = “ m , @ m z )  @m31 (29) 
We first expand the result of combining the first two 
BPAs  using Dempster’s rule. 

Substituting m;,(C) with the right-hand side of (30), we 
get 

A n B n D = $  

= W m , @ m z )  @4. 
Hence, we have shown that the normalization step in 
Dempster’s rule can be delayed without changing the 
result of combination. 

Our generalized rule of combination consists of two 
operations: a cross-product operation and a normalization 
process. Fuzzy BPA’s are first combined by performing 
the following generalized cross product: 

m;z(C) =m,@mz(C)  = c m , ( A ) m , ( B ) .  (32) 
A n B = C  

where n denotes the fuzzy intersection operator and C is 
an unnormalized intersection of focal elements, which 
could be a subnormal fuzzy subset of the frame of dis- 
cernment. The empty set is a special kind of subnormal 
focal elements. To compute the normalized combined 
BPA (e.g., for computing its belief function), we apply the 
following normalization process (discussed in Section V- 
F-2)) to the unnormalized combined BPA: 

For example, if we need to combine three bpa’s of the 
frame of discernment T ,  the result of combination is 
computed by first combining the three bpa’s without 
normalization using (32), and then normalizing the final 

. 
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result: set because the probability mass is an indication of the 

m,@m,@m,= N [ ( m , @ m , )  @ W , ] .  

It is obvious that the generalized cross-product operation 
is commutative, e.g., 

N [ ( m , @ m , )  @m.31 = N [ m , @ ( m , @ m , ) ] .  
Thus, through delaying the normalization process, we are 
able to combine fuzzy BPA’s in an order-independent 
fashion. 

In the special case where there are only two fuzzy 
BPA’s to be combined, the combined BPA using the 
generalized Dempster’s rule of combination is 

(34) 

The normalization process (i.e., (33)) generalizes the 
notion of conflicting evidence in the D-S theory to that of 
partial& conflicting evidence. In Dempster’s original rule, 
two pieces of evidence are either in conflict (i.e., the 
intersection of their focals is empty) or not in conflict at 
all (i.e., the intersection of their focals is not empty). In 
our generalized combining rule, two pieces of evidence 
are partially in conflict if the intersection of their focals is 
subnormal. The degree of conflict is measured by the 
difference between one and the peak (i.e., the maximum 
value) of the focal’s membership function. The case of 
peak being zero corresponds to the case of total conflict 
in the D-S theory. 

Our extension to Dempster’s rule differs from Ishizuka’s 
extension (discussed in Section IV) in its handling of 
subnormal intersections of focal elements. Ishizuka’s de- 
gree of intersection J ( A ,  B )  becomes max,,p., n .(xi) in 
(34) when both fuzzy set A and fuzzy set B are normal; 
therefore, it is analogous to the factor that scales down 
the basic probability in the normalization step of our 
approach. While we use the reciprocal of the factor to 
scale up the membership function of the focals’ intersec- 
tion, Ishizuka does not normalize the intersection. More 
importantly, Ishizuka’s approach appeals to intuition 
without rigorous justification, whereas our approach is 
derived from the principle that the normalization step 
should preserve the relative probabilistic constraints im- 
posed by focal elements, whether it is normal or not.4 

One of the most controversial issues regarding Demp- 
ster’s rule of combination has been its normalization 
process. Zadeh, for instance, has questioned the validity 
of discarding the probability mass assigned to the empty 

degree of conflic; between- the evidential sources that are 
combined 1191. However, to be consistent with axioms of 
probability theory, the probability of empty set has to be 
zero. In our approach, this dilemma is solved by delaying 
the normalization process. By computing the unnormal- 
ized BPA of the frame of discernment, our generalized 
rule of combination is able to  use the basic probability of 
the empty set as a measure of the degree of conflict, 
which influences the credibility of the combined eviden- 
tial sources. In the meantime, we can obtain the normal- 
ized BPA, which is needed for computing the belief 
function, by applying the normalization step to the unnor- 
malized BPA. Hence, the generalized Dempster’s rule not 
only allows the combination of vague evidential opinions, 
but also provides information regarding the credibility of 
the combined opinion. 

VI. DISCUSSION 

A. Consonant Focals and Fuzzy Focals 

Several authors have discussed the similarity between 
possibility distribution and one specific instance of the 
D-S plausibility function called consonant support finc- 
tion-when the focal elements are nested, i.e., when they 
can be arranged in order so that each focal is contained in 
the following one [lo]. Based on this observation, we have 
defined the probabilistic constraint of a fuzzy focal to be 
that of a set of consonant crisp focals in Section V-D. 
Here, we will focus on the differences between the conso- 
nant focal elements and the fuzzy focal element. 

A set of consonant focal elements differs from a fuzzy 
focal element in two important ways. First, consonant 
focal elements are more restrictive in the kinds of fuzzy 
evidential support they can represent. More specifically, 
they are limited to representing single vague evidential 
support. A fuzzy basic probability assignment (BPA), how- 
ever, may consist of several fuzzy focal elements. Hence, 
it can express multiple fuzzy evidential supports. Second, 
each fuzzy focal element is induced by single evidential 
elements, while consonant focals are induced by several 
evidential elements that form an inferential evidence [91. 
This difference between fuzzy focals and consonant focals 
explains their different combination results. The combina- 
tion of two consonant BPA’s is a result of combining their 
evidential elements painvise. Therefore, the combined 
focals are, in general, no longer consonant. However, the 
combination of two fuzzy focal elements, which involves 
the combination of underlying fuzzy compatibility rela- 
tions, always yields another fuzzy focal element. 

Due to these significant differences between fuzzy fo- 
cals and consonant crisp focals, we should emphasize that 
we do not view fuzzy focal elements as identical to conso- 
nant crisp focals. In other words, the decomposition of a 
fuzzy focal element is not equivalent to the fuzzy focal 

40bviously, the absolute probabilistic constraints of non-empty focal 
elements are not preserved by the normalization process because their 

itself. A fuzzy focal and its decomposition are only equiva- 
basic probabilities are increased by the normalization factor (i.e., the lent in the probabilistic constraints they imposed On the 
denominator in (33)). probability distribution of the frame of discernment. 
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VII. CONCLUSION 

W e  have described a generalization of the 
Dempster-Shafer theory to fuzzy sets. Rather than gener- 
alizing the formula for computing belief function, we 
generalize the basic constructs of the D-S theory: the 
compatibility relations, the objective functions of the opti- 
mization problem for calculating belief functions, and the 
probabilistic constraints imposed by focal elements. As a 
result, we can compute the lower probability (i.e., the 
belief function) directly from these generalized con- 
structs. Moreover, by employing the noninteractive as- 
sumption in possibility theory, we have modified Demp- 
ster’s rule to combine evidence that may be partially in 
conflict. 

Our approach offers several advantages over previous 
work. First, the semantics of the D-S theory is main- 
tained. Belief functions are treated as lower probabilities 
in our extension. Second, we avoid the problem of 
“choosing the right inclusion operators” faced by all 
previous approaches. Third, the generalized belief func- 
tion is determined by the whole membership function of 
the focal element, not just by some critical points as used 
in some of the previous work. Any change of the member- 
ship function of a focal element is directly reflected in a 
change of the focal’s probabilistic constraint, which in 
turn affects the belief function. Fourth, the generalized 
rule of combination provides information about the de- 
gree of conflict between the evidence combined by delay- 
ing the normalization step in original Dempster’s rule. 
Finally, our generalization is well-justified using possibil- 
ity theory and probability theory. Therefore, it serves as a 
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biidge that brings together the Dempster-Shafer theory 
and fuzzy set theory into a hybrid approach to reasoning 
under various kinds of uncertainty in intelligent systems. 
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