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Abstract

The Dempster–Shafer (DS) theory of probabilistic reasoning is presented in terms of a semantics whereby every mean-
ingful formal assertion is associated with a triple (p,q, r) where p is the probability ‘‘for’’ the assertion, q is the probability
‘‘against’’ the assertion, and r is the probability of ‘‘don’t know’’. Arguments are presented for the necessity of ‘‘don’t
know’’. Elements of the calculus are sketched, including the extension of a DS model from a margin to a full state space,
and DS combination of independent DS uncertainty assessments on the full space. The methodology is applied to inference
and prediction from Poisson counts, including an introduction to the use of join-tree model structure to simplify and
shorten computation. The relation of DS theory to statistical significance testing is elaborated, introducing along the
way the new concept of ‘‘dull’’ null hypothesis.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Dempster–Shafer; Belief functions; State space; Poisson model; Join-tree computation; Statistical significance; Dull null
hypothesis
1. Introduction

The mathematical theory of belief functions was elegantly defined in the remarkable original book [1] by
Glenn Shafer, with examples drawn mainly from simple AI-type situations. Earlier papers [2,3] of mine
had described the same basic calculus in terms of upper and lower probabilities, using the example of multi-
nomial sampling. The abstract theory shared by these two approaches is nowadays most often called Demp-
ster–Shafer (DS) theory. That the centuries-old Bayesian inference probabilistic paradigm belongs under the
umbrella of DS theory was long ago recognized [4]. In a seemingly unrelated context, the important computer
science theory of relational data bases [5] is easily recognized as constituting another limiting case where only
zero or one are allowed as probabilities. These and other special subspecies have a unified character across a
diverse spectrum of DS models. One essential common denominator is the appearance of join tree models and
associated fast algorithms for propagating DS uncertainties through undirected networks [6,7].

My own return to working on DS theory was rekindled in the late 1990s, in part through requests for advice
concerning probability assessment from scientific and operational agencies whose needs are evidently not met
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by more traditional theories. I was also inspired by a long conversation with Philippe Smets at Schwarzsee
near Fribourg in Switzerland in the spring of 1999. Philippe put his own twist on the theory through his trans-
ferable belief model [8] aimed at difficult problems of decision-making under uncertainty. Philippe was a tire-
less advocate through a long and distinguished career. His presence is greatly missed following his untimely
death. In the following paper I sketch some new DS terminology, attitudes, models, and statistical inference
procedures, thus reaffirming my belief that the DS calculus has much to offer to colleagues seeking to study
and apply methods for quantitative representation of incomplete and uncertain evidence. It is an honor to be
able to dedicate the paper to Philippe’s memory, in appreciation of his many contributions.

My original adoption of the terms lower and upper probability invites confusion with other theories that
use these same terms, and provokes debate concerning the implied existence or non-existence of unknown true
probabilities lying between defined lower and upper bounds. No such existence is implied, since true proba-
bilities nowhere appear in the theory. Shafer introduced belief and plausibility as replacements for lower
and upper probability. For nearly 30 years I have acquiesced, on the grounds that everyday words are being
used in a technical sense, not a dictionary sense, and carry no more taint of arbitrary judgment than other
commonly used technical terms in statistical science, such as significance and confidence. I think of probability
as a standard scale that quantifies uncertainty, but I have no problem with the term degree of belief. Belief in
this sense implies nothing more than routine and tentative commitment to a mathematical idealization. The
relevant question is always how much to trust model assumptions, including their consequences, considering
each particular situation on its merits.

DS theory is founded on appending a third category ‘‘don’t know’’ to the familiar dichotomy ‘‘it’s true’’ or
‘‘it’s false’’. More precisely, a DS model provides three non-negative probabilities (p,q, r) with p + q + r = 1 to
the three categories of the modal triad ‘‘known to be true’’, ‘‘known to be false’’, and ‘‘don’t know’’ associated
with each assertion specified in the model. It remains true that every statement defined within the model is in
fact either true or false, but ‘‘you’’, the DS analyst, is no longer restricted to p and q with p + q = 1 as in
Bayesian theory. Since probabilities to which ‘‘you’’ commit tentative belief are presumed to be evidence-
based, a probability p is construed to represent ‘‘your’’ evidence ‘‘for’’ the truth of an assertion, while prob-
ability q measures evidence ‘‘against’’, and probability r = 1 � p � q quantifies residual ambiguity.

Henceforth the quotation marks around ‘‘you’’, ‘‘your’’, ‘‘for’’, and ‘‘against’’ are omitted, but these remain
technical terms throughout the sequel. A DS model implies the existence of an actor making implied assertions
and subscribing to the associated uncertainty assessment, along with its understood basis in evidence. The
actor referred to as you may be linked in an application to an individual analyst, but in scientific applications
more typically refers to a community of scientists collectively recommending tentative acceptance of specific
judgments. I continue to use quotation marks for ‘‘don’t know’’ since the DS practice of assigning probabil-
ities to this category is likely to be unfamiliar to most readers.

2. Elements of the DS calculus

2.1. The constituent parts of a DS analysis

I argue that DS methodology is a fundamental tool of scientific and operational analysis. To support this
claim, both the mathematical basis and what it means must be understood. A brief sketch follows. In further
writing with colleagues, I hope to gradually develop more detailed descriptions. A book length presentation
will ultimately be needed, including many models, algorithms, software, and hypothetical examples.

In brief, a DS analysis can be represented in symbols as
Plea
Rea
ðSSM þ DSMÞ � DSC ¼ DSA: ð1Þ

This is not meant as a mathematical formula, but rather as a shorthand overview of a step-by-step process.
DSC refers to DS calculus, by which I mean the computational operations that are the technical basis of a
DS analysis, or DSA. The computational inputs fall into two categories:

(1) the state space model or SSM, and
(2) the DS model, similarly abbreviated to DSM.
se cite this article in press as: A.P. Dempster, The Dempster–Shafer calculus for statisticians, Int. J. Approx.
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SSM and DSM are put forward as replacements, respectively, for Shafer’s terms frame of discernment and
belief function. To construct a model, the SSM is first defined, then the DSM is specified over the defined
SSM, and lastly the computational operations of the DSC are applied to complete the formal processes of
a DSA.

2.2. The DS concept of state space

In widespread engineering language, a state space frames the possible states of a physical system at a single
point in time. A particular system evolving in time is then a sequence of state space snapshots at successive
points of time. In this paper, the terminology is altered to include trajectories of the system through space
and time within an SSM. The flexibility conferred by this broadening makes it easy to expand or contract
working choices of a formally represented small world in the course of developing a fully articulated DS
analysis.

The SSM of a particular DSA is a mathematical space that encodes all the possible states of a system under
analysis. You assume that exactly one among the possible states is the true state. The SSM is an idealized rep-
resentation of a slice of reality, specifying your formal description of the small world that you have chosen to
study. The purpose of DSA is to express probabilistically your uncertain inference about which element of the
SSM represents the true state.

Given modern technologies for representing, recording, storing, accessing, and analyzing data, you are
likely to have at your disposal mathematically realizable small worlds that are unimaginably large relative
to systems that could be studied only a few years ago. On the other hand, realizable systems will always remain
small relative to the limitless complexities of actual real world phenomena. Complexity of state spaces is scar-
cely an issue in this paper, however, since my examples consist of at most a few Poisson counts, and hence
represent worlds that are small by any standard.

2.3. What it means to construct a DSM over a defined SSM

The mathematical content of a DSM consists of a system of (p,q, r) triplets that correspond one-to-one with
assertions that you might make about a specified SSM. The mathematics of DSMs is most easily introduced
assuming a state space that consists of a finite set of elements [1,3]. In this case, your possible assertions cor-
respond to the 2n subsets of the state space. The mathematical term for this collection of subsets is power set.
The full power set includes the empty set ; and the full space S. A corresponding full DSM creates a (p,q, r)
triplet for every member of the power set. The triplets for the empty set and the full set are preordained to be
(0,1,0) and (1, 0,0), respectively, because you are assumed to be sure that exactly one of the n elements of S
represents the true state of the small world. The assignment of the remaining 2n � 2 probability triplets is at
your disposal, but with important restrictions on choice. For example, if a subset A of S is associated with
(p,q, r) then the complementary subset Ac must be associated with (q,p, r), because evidence for an assertion
means the same as evidence against its negation.

While various axiom systems can be devised to underpin the mathematics of DSMs, these come down in the
end to the assumption of consistency with a unique set function called the mass function. The mass function is
any ordinary discrete distribution of mathematical probability over the 2n � 1 non-empty subsets of S,
including S itself. In other words, the simplest way to think about creating a DSM is to write out all the sub-
sets in a long list and then to create the corresponding list of non-negative real numbers summing to one that
constitute the mass set function. In actual practice, most state spaces are not finite, and the probability mass is
distributed over selected subsets of countable or continuous infinities of states. Nevertheless, despite its incom-
plete mathematical pedigree, the simple and rigorous finite space theory is a generally trustworthy guide, just
as it is for basic textbook presentations of the standard theory of probability, in the special case where r = 0
for every assertion.

The mass mðAÞ associated with each assertion A �S is an atom in the sense that it cannot be further
broken down into pieces assigned to subsets of A. Logically, however, the probability pðAÞ representing
the uncertainty that you unambiguously assign to A is different from mðAÞ because pðAÞ accumulates masses
from all the assertions that imply A. In symbols,
Please cite this article in press as: A.P. Dempster, The Dempster–Shafer calculus for statisticians, Int. J. Approx.
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Plea
Rea
pðAÞ ¼
X
B�A

mðBÞ; ð2Þ
where as noted above the empty set ; has m(;) = 0.
The probabilities pðAÞ defined in this way for all A determine the full triplet ðpðAÞ; qðAÞ; rðAÞÞ associated

with A because qðAÞ ¼ pðAcÞ while rðAÞ ¼ 1� pðAÞ � qðAÞ. The set function pðAÞ was called a belief
function by Shafer, and DS theory itself is often called the theory of belief functions. The term belief function
is unnecessarily formal, however, and has led to many misperceptions. In fact, pðAÞ is a mainline successor to
ordinary textbook probability, principally designed to allow you to assign a non-zero probability to ‘‘don’t
know’’.
2.4. Why it is important to allow probabilities of ‘‘don’t know’’

Later in the paper, I discuss several hypothetical situations involving finite numbers of counts. To make a
start, imagine a counter set up to record the number X1 of occurrences of a rare event in a specified time unit,
say one hour. Suppose you observe the count X1 = 5. What can you say about the unknown count X2 of
occurrences that will be recorded in a second hour? And what can you say about the exact occurrence times
0 6 T 1 6 T 2 6 � � � 6 T 5 6 1 underlying the count X1 = 5?

The first step in creating a DSA is to set up an SSM. For example, to begin to address the first question,
your state space represents at a minimum the pair of variables ðX 1;X 2Þ where each component is a non-neg-
ative integer. Later in the paper I will introduce a Poisson model for these counts, but for now suppose you
know only X1 = 5, and ‘‘don’t know’’ anything about X2. The preceding sentence translates to a DSM that
assigns mass one to the subset (5, X2) of the two-dimensional space ðX 1;X 2Þ, where X2 remains an unknown
member of the set {0,1,2, . . .}. To answer the second question as well as the first question, you must further
extend the SSM to include the five successive occurrence times of the count X1 = 5. Here, you ‘‘don’t know’’
anything other than 0 6 T 1 6 T 2 6 � � � 6 T 5 6 1 about these occurrence times, so you now have mass one on
a subset of the 7-dimensional SSM defined by ðX 1;X 2; T 1; T 2; . . . ; T 5Þ, as determined by both pieces of infor-
mation X 1 ¼ 5 and 0 6 T 1 6 T 2 6 � � � 6 T 5 6 1.

The example is too simple to be substantively interesting, but it is nevertheless instructive from the perspec-
tive of DS logic because it illustrates two fundamental operations of the DS calculus. First, each of the prop-
erties X1 = 5 and 0 6 T 1 6 T 2 6 � � � 6 T 5 6 1 is a well understood logical DSM defined on respective 1D and
5D margins of the full 7D SSM determined by ðX 1;X 2; T 1; T 2; . . . ; T 5Þ. Specifically, the data X1 = 5 allows you
to make (p,q, r) assessments about the subsets of the 7D SSM, because it extends from the 1D space of X1

alone to the full seven dimensions by assigning mass one to the so-called cylinder subset of the 7D SSM

defined by setting X1 = 5. In a similar fashion, the condition 0 6 T 1 6 T 2 6 � � � 6 T 5 6 1 translates into a
marginal DSM that places mass one on the cylinder subset of the 7D SSM that satisfies the string of inequal-
ities 0 6 T 1 6 T 2 6 � � � 6 T 5 6 1. The second fundamental operation of the DSC is combination, here com-
bining the two individual 7D DSMs just described into a single 7D DSM that places mass one on the
subset satisfying both of the logical conditions. Each of the two original DSMs on the 7D SSM, as well as
their combination, provides a (p,q, r) for every assertion that can be based on the full SSM. The output of
a DSA consists of computed and reported (p,q, r) triplets corresponding to questions that you specify as of
interest.

So why it is important to allow probabilities of ‘‘don’t know’’? A compelling answer is that ‘‘don’t know’’ is
implicit in every formal analysis, even when hidden from view. For example, the DSM of a Bayesian analysis
assumes that each defined assertion has an associated (p,q, 0) with p + q = 1. But in the real world situation
addressed by the Bayesian analysis, many other meaningful dimensions are silently present, and could have
been appended to the SSM. Viewing a Bayesian analysis as a DS analysis on such a margin of an expanded
SSM leads to recognition of the implied assumption that you know nothing relevant about the added dimen-
sions. Before reporting a Bayesian analysis, therefore, you should judge whether this assumption is adequate
in the light of available evidence, and if not, the SSM should be expanded and a DSM reconstructed accord-
ingly. A similar injunction applies to any reported DS analysis. Explicit recognition of the category ‘‘don’t
know’’ greatly extends your range of available probabilistic analyses.
se cite this article in press as: A.P. Dempster, The Dempster–Shafer calculus for statisticians, Int. J. Approx.
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2.5. DS extension as a general operation

The simple ðX 1;X 2; T 1; T 2; . . . ; T 5Þ example is purely logical in the sense that each mass function consists of
mass one placed on a single subset of a marginal or extended SSM. I also argued that extension and combi-
nation are implicit in Bayesian analysis. These two operations generalize to situations where the component
DSMs have non-trivial mass distributions. Since they are at the core of the DS calculus, it is important to
explain them carefully.

When you restate the assertion X1 = 5 in the context of the full 7D SSM, you are in effect placing mass one
on the cylinder set in the full SSM that consists of all the possible states in 7 dimensions in which the marginal
variable X1 takes the value 5. The original 1D assertion and the extended 7D assertion, although mathemat-
ically distinct, convey exactly the same information. In place of X1 = 5, you might more generally represent
your evidence via DS masses summing to one over a collection of sets of possible values of X1. Each set in
the collection defines an assertion about X1 that extends to a logically equivalent assertion about the full
SSM whose extended DSM mass is defined to be the same as the original mass on the margin. For example,
you might believe that your original counter is prone to error, so that instead of being sure that X1 = 5, you
might assign masses .5, .25, .25 to the three subsets {5}, {4,5},{5,6} of the possible values of X1. Each of the
three subsets projects up to the corresponding cylinder subset of the 7D space, and the three masses likewise
project up along with the subsets to define DS masses for the 7D SSM cylinder sets, thus defining a 7D DSM.

The foregoing example is not special. Any marginal DSM extends directly to a logically equivalent DSM by
converting each subset in the marginal SSM into its corresponding cylinder subset in the full SSM, and apply-
ing each corresponding marginal mass to the associated cylinder. From the standpoint of interpretation a
marginal DSM and any extensions to more refined SSMs carry exactly the same information, and the math-
ematical distinction is only a formality. Extension is fundamental to the calculus because model construction
typically proceeds as in the ðX 1;X 2; T 1; T 2; . . . ; T 5Þ example by assigning DSMs to margins, then extending
each to a common expanded DSM, before combining on the expanded DSM.

2.6. DS combination of independent components

In the ordinary theory of probability, independence is represented by a product measure on a product
space. In Boolean logic, the conjunction of events is represented by intersecting the state space subsets that
represent the individual events. Both operations are special cases of DS combination, with independence
assumed explicitly in the former case, and implicitly in the latter case. Another special case of DS combination
is Bayes’s formula for combining prior and likelihood in statistical inference [4], where again the independence
assumption is implicit and rarely examined. In general, DS independence means that you deem the evidential
sources underlying the individual input DSMs to be mutually non-compromising, whence directly combinable
to represent pooled evidence.

A full exposition of DS combination breaks the operation down into a succession of steps. Given a list of
independent component DSMs with a common state space S, create from each component a list of all (subset,
mass) pairs with positive mass (or mass density in the case of continuous state spaces). Next, from each such
component list pick a (subset, mass) pair, and combine across components by intersecting subsets and multi-
plying probabilities. Doing this in all possible ways yields a raw combined list of (subset, mass) pairs. Given
the raw list, the (subset, mass) pairs having a common subset can be combined into a single (subset, mass) pair
by summing over masses, obtaining in this way a combined DSM referred to as unnormalized because there is
in general positive mass on ; � S. Finally, the normalized combined (subset, mass) list is obtained from the
unnormalized list by dropping the empty subset and rescaling the masses to sum to unity.

It is obvious that packets of evidence assumed DS independent may be combined sequentially in any order,
producing the same final result. Although the preceding paragraph assumes normalized inputs and normalized
output, the core product/intersection operation applies directly to unnormalized inputs that include mass on ;,
and produces an unnormalized output. In practice, it often makes sense to work sequentially with unnormal-
ized DSMs. Normalization is needed only at a final stage when the result is interpreted as your uncertainty.

When normalized DSMs are combined to produce an unnormalized DSM, the resulting m(;) is called
conflict. Conflict is an important by-product of DS combination. It is neither uniformly good nor bad. Good
Please cite this article in press as: A.P. Dempster, The Dempster–Shafer calculus for statisticians, Int. J. Approx.
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conflict uses logic to rule out impossible inferences associated with zero mass in separate input DSMs. For
example, from the DS perspective, Bayesian inference typically has conflict near or at unity, and the final
rescaling to normalize a posterior distribution is often a challenging computational task. On the other hand,
if input DSMs imply contradictory inferences when considered separately, then conflict can be interpreted as
contradicting aspects of component DSMs that are seen as subject to challenge. As always, model construc-
tion is partly a science and partly an art. You are the judge, and you must live with the consequences.

2.7. The commonality set function

I have emphasized above the probability set function pðAÞ and the mass set function mðAÞ, the former
because in applications it represents directly interpretable measures of your uncertainty, and the latter because
it is a natural way to conceptualize the associated distribution of random sets. Early on, however, a third set
function
Plea
Rea
cðAÞ ¼
X
B�A

mðBÞ; ð3Þ
was identified and recognized as technically important because in cðAÞ terms DS combination becomes simple
multiplication, and thus becomes basic to algorithm development for practical computation, as illustrated in
Section 3.

Shafer [1] introduced the term commonality for the set function cðAÞ, and presented elegant Möbius linear
transformation equations for passing back and forth among pðAÞ, mðAÞ, and cðAÞ.

2.8. The associated stochastic calculus

Viewed abstractly, the mass functions of DS theory are ordinary probability measures built on a sample
space whose elements are sets. The branch of the standard theory of probability that studies such measures
is called the theory of random sets. It follows that mathematical theorems and computational algorithms
for DS theory and methods can always be expressed in abstractly equivalent forms that are easily understood
by users familiar with the standard mathematics of probability, even while the thought patterns and technical
concepts of DS modeling and analysis remain unfamiliar to most such users. To facilitate communication, the
following examples present the details of familiar standard analyses that parallel the DS analyses of each
example. To stress that physical randomness has no place in the interpretation of DS probabilities, terms such
as randomness and random set are prefixed to read a-randomness and a-random set when discussing the
details of parallel stochastic mathematics. The ‘‘a-’’ prefix abbreviates ‘‘associated’’.
3. Poisson models and analyses

3.1. Introducing the Poisson DSM

The Poisson DSM is a fundamental DS building block relating a pair of variables L and X, where L is a
continuous non-negative rate variable, and X represents a count of events occurring at rate L. The state space
of the Poisson DSM consists of horizontal lines in the (L,X) plane, as shown in Fig. 3.1.

The Poisson DSM is defined mathematically by assigning a mass distribution over a-random subsets of its
(L,X) state space. These subsets are determined by an auxiliary sequence of a-random points
0 6 V 1 6 V 2 6 V 3 6 � � � on the L axis. As illustrated in Fig. 3.2, the auxiliary sequence V 1; V 2; V 3; . . . defines
a corresponding sequence of intervals 0 6 L 6 V 1; V 1 6 L 6 V 2; V 2 6 L 6 V 3; . . . at levels X = 0,1,2, . . ..
The union of these intervals becomes an a-random set in the state space (L,X) when the lengths of the
intervals are independently and identically distributed with the unit scale exponential density exp(�u) for
u P 0.

It has become standard terminology in mathematical treatments of probability to call random points
V 1; V 2; V 3; . . . defined in this way by exponentially distributed interval lengths a Poisson point process. As
se cite this article in press as: A.P. Dempster, The Dempster–Shafer calculus for statisticians, Int. J. Approx.
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derived in standard textbooks such as Feller [9], the number of events preceding a fixed L in a Poisson point
process is a Poisson random variable X whose discrete density is denoted here by
Plea
Rea
pðxjLÞ ¼ Lx

x!
expð�LÞ; 8x ef0; 1; 2; . . .g ð4Þ
The DS interpretation of this basic mathematical fact is that if you treat the Poisson DSM as representing
one source of uncertain knowledge about (L,X), and you obtain a known value of L as a second independent
piece of evidence about the pair (L,X), your inference from combining the two sources of evidence is another
DSM over (L,X) whose mass distribution is the above Poisson distribution over singleton subsets of the ver-
tical line defined by the given L. The final DSA step is to marginalize the combined DSM to the 1D margin of
X alone, which is trivial in this case, yielding the Poisson distribution for your inference about X. Note that the
Poisson distribution is interpreted here as a mass distribution over the singleton subsets {0}, {1},{2}, . . . of
se cite this article in press as: A.P. Dempster, The Dempster–Shafer calculus for statisticians, Int. J. Approx.
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{0,1,2, . . .}. Restricting the mass distribution to singleton subsets in effect converts the DSM to an ordinary
Bayesian conditional probability measure – a common special type.

The novel aspect of the Poisson DSM is apparent when you have no prior evidence about L, but you are
able to observe an accurate value eX of X, such as eX ¼ 5 in the toy example of Section 2.4. Any observed valueeX of X can be interpreted as a DSM on the SSM (L,X) that places mass one on the horizontal line X ¼ eX and
assuming that the evidence in the observation is independent of the evidence provided by the Poisson assump-
tion, then the combined evidence when marginalized to the 1D SSM of L places the unknown value of L on
the a-random interval V eX 6 L 6 V eXþ1

. This characterization of inference about L was first given by Almond
[10,11]. Another way to derive the Poisson DSM is to treat Poisson counts as a limiting case of the original
Dempster [2] treatment of binomial counts, much as Poisson long ago obtained the Poisson family of distri-
butions as limiting forms of binomial distributions.

The left end V eX of this a-random interval is by definition the sum of eX independent exponential a-random
variables, and hence has the unit scale gamma distribution with shape eX , where the general form of the
gamma density with shape a P 0 and scale b P 0 is denoted here by
Plea
Rea
cðtja; bÞ ¼ ba

CðaÞ t
a�1 expð�btÞ; 8t P 0; ð5Þ
while the length of the interval V eXþ1
� V eX is independently exponentially distributed with density

cðtj1; 1Þ ¼ expð�tÞ; 8t P 0.
It is a simple exercise in standard probability to check that the joint distribution of the pair ðV eX ; V eXþ1

Þ of
a-random variables is neatly characterized by the formula
Pr V eX 6 u; V eXþ1
P v

� �
¼ 1

eX !
ueX expð�vÞ; 8 v P u P 0: ð6Þ
In standard probability terms, this is a form of the bivariate cumulative distribution of the ends of the a-ran-
dom interval ðV eX ; V eXþ1

Þ. In DS terms, however, it is the commonality function c(u,v) of the interval (u,v) for
the posterior DSM of L given the observation eX , and is useful as such, as shown in Section 3.2

3.2. Multiple poisson count models

Instead of a single variable X that counts events occurring in a single unit time period of length one at an
unknown Poisson rate L per unit time, I now assume n DS-independent variables X 1;X 2; . . . ;X n that represent
counts, all occurring at the same rate L per unit time, but having differing known periods s1; s2; . . . ; sn: This
situation requires a DSM that combines n independent Poisson counts over the state space ðL;X 1;X 2; . . . ;X nÞ.
You create this DSM mathematically by starting from marginal pairs (L,Xi) with 2D Poisson DSMs having
rates siL, then extending each of these to the full (n + 1)D SS, and finally performing DS-combination on the
full state space.

In practice it is computationally unnecessary, as well as impractical, to work with the full state space. Sup-

pose, for example, that you seek the marginal posterior DSM of L given observations ðfX 1 ;fX 2 ; . . . ;fX nÞ. Each
individual observation fX i provides a commonality function for si L determined by an application of formula
(6). Simultaneous coverage of (u,v) by the n independent a-random intervals ðV eX i

; V eX i
þ 1Þ is given by the

product
Yn

i¼1

1

fX i !
ðsiuÞ

eX i expð�sivÞ /
1

eX !
ðsuÞeX expð�svÞ; 8v P u P; 0 ð7Þ
where eX ¼Pn
i¼1
fX i and s ¼

Pn
i¼1si showing that DS-combination of the n counts eX i yields the same posterior

DSM as if you had observed a single Poisson count X ¼ eX at rate L per unit time, but observed for time per-
iod s. The result just stated is a DS version of the statistical principle of sufficiency introduced by R.A. Fisher
in the 1920s. Under sufficiency, if the information about the individual Xi is lost and only the sum X ¼ eX is
retained, your posterior DSM of the unknown values of the Xi can be shown to be a standard multinomial
distribution with parameters ðs1=s; s2=s; . . . ; sn=sÞ. In other words, the posterior DSM assigns all its mass
se cite this article in press as: A.P. Dempster, The Dempster–Shafer calculus for statisticians, Int. J. Approx.
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to singleton subsets, and is equivalent to the celebrated fact recognized by Fisher that the conditional distri-
bution of ðX 1;X 2; . . . ;X nÞ given the sufficient statistic does not depend on the unknown L.

3.3. The role of join trees

The prescription in Eq. (1) stipulates that DS analysis flows from a DSM computed on a full state space,
implying that the rigorously correct way to carry out the analysis of Section 3.2 would have been to carry out
DS-combination on the full (n + 1)D SS and then marginalize to the 1D SS of L. This is unnecessary due to
the fundamental join tree theorem of DS analysis due to Shenoy and Shafer [6] or Kong [7], referred to briefly
in Section 1, which to smooth exposition was omitted from Section 2. The simpler analysis of Section 3.2 does
in fact lead to the same inference about L as the full SS analysis would have reached, for the following reason.

The final inference about L, that can be characterized in two equivalent ways, is defined as DS-combination
of 2n input DSMs, namely, the n data points X i ¼ fX i and the n Poisson DSMs associated with the pairs
ðL;X Þi. These 2n inputs determine a mathematical structure called a join tree as pictured in Fig. 3.3.

The first step in creating a join tree representation is to write out a list of all the subsets of the variables
associated with independent component DSMs that are DS-combined to produce a full DSM. In the example
at hand these subsets are ðX 1Þ; ðX 2Þ; . . . ; ðX nÞ; ðL;X 1Þ; ðL;X 2Þ; . . . ; ðL;X nÞ; ðLÞ all contained in ðL;X 1;X 2; . . . ;
X nÞ. These 2n + 1 subsets are taken to be the nodes of a mathematical structure called a tree when they are
joined by the smallest number of edges connecting all of them, namely, one fewer than the number of nodes.
In the example there are 2n edges connecting the 2n + 1 nodes.

The tree is called a join tree if the nodes containing each single variable are connected by edges forming a
corresponding subtree. The choice of a join tree for a given DSM is often not unique. In some models, it is
necessary to group the input variables forming a smaller set of more complex variables. For example, the com-
plete variable set ðL;X 1;X 2; . . . ;X n) constitutes a trivial join tree with just one node, but is of no practical use.
The goal is to define a join tree whose nodes are as small as possible, since the associated algorithm need only
carry out DS-combination within nodes.

The inclusion of the node (L) in the example is unnecessary since the ðL;X iÞ nodes could simply have been
connected directly with n � 1 edges in many possible ways each providing a join tree, but including (L) with a
vacuous prior DSM, such that ‘‘don’t know’’ has value r = 1 on every margin, is an important feature because
propagation algorithms that characterize DS-combination in join trees are designed to clip off extremal nodes
seriatim finally collapsing the tree to a single node and ending with the implied marginal DSM on that node.
The join tree theorem asserts that a node can be clipped by extension to the SSM of its neighbor, and DS-
combining there, to form the marginalized join tree. In the example, the singleton nodes (Xi) are incorporated
into their neighboring ðL;X iÞ nodes by DS-combining their respective X i ¼ eX i and Poisson DSM components
as in Section 3.1. Then the resulting (L,Xi) nodes are clipped leaving only the (L) node carrying the desired
posterior DSM. In this way, the intuitively correct analysis given in Section 3.2 is rigorously justified.

3.4. Prediction: the example of Section 2.4

Consider now the preceding model, specialized to n = 2, and altered to have X1 observed as before, while X2

is unobserved with no prior DSM assigned. The input DSM now has three independent components, namely
L

L,X1 L,X2 ... L,Xn

X1 X2 ...

...

Xn

Fig. 3.3. The join tree for the multiple Poisson inference of Section 3.2. The arrows on the edges indicate the directions of inward
propagation.
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the observation X 1 ¼ fX 1 and the two Poisson DSMs on ðL;X 1Þ and (L,X2). A basic task is to combine
and marginalize to the predictive DSM for X2 given the data X 1 ¼ fX 1 . The same set-up was posed in Sec-
tion 2.4 with s1 = s2 = 1 and fX 1 ¼ 5, but without the Poisson assumptions. The point here is to show how
the Poisson assumptions lead rigorously to a DSM prediction of X2. The Poisson assumption on ðL;X 1Þ leads
also to a simple posterior DSM for the occurrence times 0 6 T 1 6 T 2 6 � � � 6 TeX 1

6 s1 of the events counted
by X1.

The join tree is now as shown in Fig. 3.4 with clipping proceeding toward the node (X2), as contrasted with
clipping toward the node (L) required in Section 3.3. Clipping the nodes (X1), then ðL;X 1Þ, the resulting com-
bined DSM at node (L) amounts to placing s1L on the a-random interval V eX 1

6 s1L 6 V eX 1þ1
, or equivalently

placing s2L on the a-random interval
Plea
Rea
s2

s1

V eX 1

6 s2L 6
s2

s1

V eX 1þ1
; ð8Þ
whose distribution is described by a modification of Eq. (6). This information about L must now be combined
with the Poisson DSM at the ðL;X 2Þ node whose a-random sets are as shown in Fig. 3.2 with s2L placed on the
union of the successive intervals
0 6 s2L 6 V 21; V 21 6 s2L 6 V 22; V 22 6 s2L 6 V 23; . . . ; ð9Þ
at levels X2 = 0,1,2, . . ..
DS-combination looks at the intersections of the intervals for s2L from (8) and (9), and in the case of (9) at

the corresponding levels of X2. It is evident that the interval (8) must intersect a consecutive subset of the inter-
vals (9), whence the a-random set that defines the desired posterior DSM for X2 is an a-random interval with
endpoints ðJ ; J þ KÞ where J and K are non-negative integer-valued a-random variables.

The distribution of J and K is best understood by first conditioning on the interval (8) and then averaging
over V eX 1

and V eX 1þ1
. From the theory of Poisson point processes, J and K are conditionally independent Pois-

son a-random variables with rate parameters ðs2=s1ÞV eX 1

and ðs2=s1ÞðV eX 1þ1
� V eX 1

Þ. The theory developed in
Section 3.1 shows that V eX 1

and V eX 1

are a-independently gamma distributed with shapes eX 1 and 1, and scale
unity, the latter being a simple unit scale exponential a-random variable, whence it is easily shown that J and K

are independently distributed as negative binomial a-random variables with densities gðjjeX 1; s2=ðs1 þ s2ÞÞ and
gðjj1; s2=ðs1 þ s2ÞÞ, the latter being a simple geometric density, where the general form of a negative binomial
density is
gðjjl; P Þ ¼ ðjþ l� 1Þ!
j!ðl� 1Þ! P jð1� P Þl 8 j ef0; 1; 2; . . .g: ð10Þ
For example if eX 1 ¼ 5 as in Section 2.4, the (p,q, r) triple associated with the assertion X2 6 10 is
(.895, .039, .046), or if eX 1 ¼ 10, the (p,q, r) triple associated with the assertion X2 6 15 is (.836, .115, .049),
assuming s1 = s2 in both cases.

Finally, recall the remark at the end of Section 3.2 that the components of a sum of independent Poisson
counts has a multinomial distribution given that you have observed only the sum. A limiting case of this the-
orem shows that given an observation X 1 ¼ eX 1 that results from events occurring at a constant Poisson rate
over the time interval (0,s1) the individual times 0 6 T 1 6 T 2 6 � � � 6 TeX 1

6 s1 are distributed as eX 1 uniformly
distributed ordered a-random draws from the interval (0,s1).
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4. Significance testing

Think about a hypothetical situation where a firm sells a small manufactured item in batches of 1000 with
an advertised defective rate of 1.6% per item. Your first purchase of a batch turns out to have 24 defective
items, which is 50% more than the expected number of 16 per 1000. Is the observation 24 consistent with Pois-
son batch-to-batch variation at the rate 16? The ‘‘don’t know’’ feature of DS theory leads naturally to a refor-
mulation that sheds new light on traditional statistical tests of significance.

In the situation just described, many scientists would routinely compute a ‘‘p-value’’, defined as the prob-
ability under the null hypothesis of an observation at least as extreme as the actual observation. According to
Fisher [12], a computed p-value less than a tipping point such as .05 or .01 or .001 has the force of a logical
disjunction. Either the null hypothesis being tested is false, or a chance occurrence with small prior probability
has occurred. Reluctance to believe the latter raises your propensity to believe the former. For the model at
hand, a relevant p-value is

P1
j¼eX pðjjL0Þ, or .0367 in the numerical example. Fisher’s interpretation is often

criticized on the grounds that actual observations are almost always highly improbable a priori, without rais-
ing questions about the basis of the computed probability. The long and controversial history of frequentist
and Bayesian elaborations and alternatives to Fisher’s position is by now rather stale. What follows is new and
different.

Scientists often misconstrue a p-value and its complement, such as the above .0367 and .9633, as Bayesian
probabilities summing to one for and against the null hypothesis. There is no basis in the mathematics for this
interpretation, however. As I now demonstrate, DS analysis suggests that the fallacious interpretation is half
right in the specific sense that .9633 is a meaningful probability for the hypothesis {L > L0}, while .0367 splits
into two parts, with .0223 assigned to {L < L0} and .0144 assigned to ‘‘don’t know’’.

Following the analysis of Section 3.1, an observed eX , such as eX ¼ 24, leads to a posterior DSM that places
L on the a-random interval ðV eX ; V eXþ1

Þ. This interval has three mutually exclusive positions relative to an
assumed null value L0 of L, such as L0 = 16, namely, entirely to the left of L0, or covering L0, or entirely
to the right of L0. In symbols, these conditions are V eXþ1

< L0, or V eX 6 L0 6 V eXþ1
, or V eX > L0. From the

mathematical connection between Poisson point processes and Poisson distributions, it follows that these
three cases have Poisson a-probabilities

P1
j¼eXþ1

pðjjL0Þ; pðeX jL0Þ; and
PeX�1

j¼0 pðjjL0Þ, respectively, whose sum
is 1. In the numerical illustration, these values are .0223, .0144, and .9633.

Switching from the formal a-mathematics of the previous paragraph to its DS interpretation, the observa-
tion eX implies a marginal DSM over the three member state space L ¼ fL > L0g [ fL ¼ L0g [ fL < L0g
defined by masses

P1
j¼eXþ1

pðjjL0Þ and
PeX�1

j¼0 pðjjL0Þ assigned to {L > L0} and {L < L0}, but with remaining

mass pðeX jL0Þ assigned to the full space L. The reason for the ‘‘don’t know’’ assignment of the single Poisson
term is that with a-probability one any a-random interval that covers {L = L0} also intersects {L > L0} and
{L < L0}.

Three aspects of this interpretation deserve special attention. First, as claimed above, the standard p-value
splits into the two parts given by

PeX�1
j¼0 pðjjL0Þ and pðeX jL0Þ. Another way to put this is to state that the

assertion {L > L0} has ðp; q; rÞ ¼ ð
P1

j¼eXþ1
pðjjL0Þ;

PeX�1
j¼0 pðjjL0Þ; pðeX jL0ÞÞ, or in the example

(p,q, r) = (.9633, .0223, .0144). Second, because no mass resides on {L = L0} alone, the probability for the
assertion that the null hypothesis is true is zero. This accords with the understanding by applied statisticians
that the logic of traditional Fisherian significance testing is only able to reject a null hypothesis, and in no way
confirms it. In the DS interpretation, the null hypothesis is rejected by confirming an alternative.

The third aspect takes us into uncharted territory. When statisticians think about testing a null hypothesis,
they generally think about designing a test to be sensitive against defined alternatives. For example, the test
with p-value .0367 is regarded as directed against the alternatives {L > .016}. If you wish to test against the
two-sided alternative {L > L0} [ {L < L0}, the DS inference for the assertion that this alternative is true is
(p,q, r) = (.9856,0, .0144). In another type of situation, actually a variant of the one-sided situation, you
may believe with certainty that {L < L0} is ruled out. Treating the last assumption as another DSM to be com-
bined with the Poisson DSM, means that the mass

PeX�1
j¼0 pðjjL0Þ is conditioned out and the remaining two

terms are renormalized to sum to one. In the example, the resulting binary assertion {L > .016} versus its
Please cite this article in press as: A.P. Dempster, The Dempster–Shafer calculus for statisticians, Int. J. Approx.
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negation {L = .016} has (p,q, r) = (.9853, 0, .0147). There is very little difference between the two cases, but
both suggest that the null hypothesis can be rejected more strongly than the original p-value of .0367 indicated.
Is this credible?

To put the issue more starkly, imagine a situation where you have experienced 100 batches of 1000 items
while continuing to assume a stable Poisson rate, and where you have found 1680 defective items. Having 100
times as many observations as in the single batch example, your estimate of L has only 1/10th the standard
error, but the hypothetical deviations from expected, namely, 24 � 16 = 8 and 1680 � 1600 = 80 were both
chosen to be ‘‘2 sigma’’ values and hence to have roughly the same traditional p-values for testing the null
hypothesis {L = .016}. In fact the traditional p-value is now .0241 and splits in two parts now .0227 and
.0014. The reduction in the traditional p-value comes mainly from the second term, which dropped from
.0147 to .0014, which is again an expected roughly 1/10 for theoretical reasons not presented here. Now, how-
ever, the two-sided and one-sided (p,q, r) are identical to 4 decimal places at (.9986, 0, .0014) leaving much less
room for doubt than did the original p-value of .0276. Again, is this credible? At first sight the result is par-
adoxical, but in fact means only that no precise value of L has support from the data among a continuous
infinity of possibilities. For this example, the question has become very different from that addressed by
the traditional p-value.

The DS formulation suggests widening the concept of null hypothesis. A traditional null hypothesis such as
{L = L0} may be called ‘‘sharp’’ [13]. Adopting a DS outlook, however, it becomes natural to consider a con-
trasting type that may be called ‘‘dull’’, where the null hypothesis asserts that the parameter of interest lies in a
defined region. For example, a supplier might certify only that {.015 6 L 6 .017}. In DS terms, a dull null
hypothesis is a DSM that places mass one on the associated region. For example, it is a familiar type of engi-
neering specification to set a predicted failure rate per item in a range such as .016 ± .001 with no probabilistic
concept of error distribution implied.

With the dull null hypothesis defined as an interval {L1 6 L 6 L2}, and the uncertainty about L specified as
the a-random interval ðV eX ; V eXþ1

Þ, inference concerning the null hypothesis depends on six computed a-prob-
abilities for the events that (1) the a-random interval is entirely to the left of L1, (2) entirely to the right of L2,
(3) entirely contained in the interval {L1 6 L 6 L2}, (4) overlapping the left end of the interval but not the
right end, (5) overlapping the right end of the interval but not the left end, and (6) overlapping the entire inter-
val. Straightforward derivations of formulas for a-probabilities, and details of connections with relevant
(p,q, r) assessments are omitted here in favor of numerical examples that illustrate how sharp and dull null
hypotheses may be expected to compare in practice.

In place of marginal uncertainties about L ¼ fL > L0g [ fL ¼ L0g [ fL < L0g interest now focuses on
Lþ ¼ fL > L2g [ fL1 6 L 6 L2g [ fL < L1g. Returning to the hypothetical data eX 1 ¼ 24, and the dull null
hypothesis {.015 6 L 6 .017}, the traditional test asks whether the observation is too large relative to the
expected null limit of .017, leading to the p-value .0633. The six a-probabilities of the preceding paragraph
are .0112, .9367, .0223, .0072, .0215, .0011, leading to (.9367, .0407, .0226) for the one-tail assertion
{L P .017}, or (.9479, .0223, .0298) for the two-tail assertion {L > .017} [ {L < .015}. The evidence for failure
of the dull null hypothesis is of course weaker than for the sharp null hypothesis, but not drastically so. The
situation with the observation 1680 is much different. Now the six a-probabilities are .0000, .3106, .6807,
.0000, .0086, .0000, leading to (.3106, .6807, .0086) to 4 decimal places for the one-tail or two-tail assertions,
and there is substantial probability .6807 for the assertion that the dull null hypothesis is true.

Indications are that DS analyses can reproduce standard significance test p-values, but are capable of
much more focus, depth, and sophistication in the handling of statistical uncertainties. Complex issues
regarding significance testing merit careful discussion beyond the limitations of this paper, both to fully
develop and explore DS possibilities, and to compare with non-DS approaches. The goal here is just to plant
a seed.
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