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This paper describes DARTEL, which is an algorithm for diffeo-
morphic image registration. It is implemented for both 2D and 3D
image registration and has been formulated to include an option for
estimating inverse consistent deformations. Nonlinear registration is
considered as a local optimisation problem, which is solved using a
Levenberg–Marquardt strategy. The necessary matrix solutions are
obtained in reasonable time using a multigrid method. A constant
Eulerian velocity framework is used, which allows a rapid scaling and
squaring method to be used in the computations. DARTEL has been
applied to intersubject registration of 471 whole brain images, and the
resulting deformations were evaluated in terms of how well they encode
the shape information necessary to separate male and female subjects
and to predict the ages of the subjects.
© 2007 Elsevier Inc. All rights reserved.

Introduction

At its simplest, image registration involves estimating a smooth,
continuous mapping between the points in one image and those in
another. The relative shapes of the images can then be determined
from the parameters that encode the mapping. The objective is
usually to determine the single “best” set of values for these
parameters. There are many ways of modelling such mappings, but
these fit into two broad categories of parameterisation (Miller et al.,
1997).

• The small-deformation framework does not necessarily preserve
topology—although if the deformations are relatively small,
then it may still be preserved.

• The large-deformation framework generates deformations (dif-
feomorphisms) that have a number of elegant mathematical
properties, such as enforcing the preservation of topology.

Many registration approaches still use a small deformation
model. These models parameterise a displacement field (u), which
is simply added to an identity transform (x).

ΦðxÞ ¼ xþ uðxÞ ð1Þ

In such parameterisations, the inverse transformation is sometimes
approximated by subtracting the displacement. It is worth noting that
this is only a very approximate inverse, which fails badly for larger
deformations. As shown in Fig. 1, compositions of these forward
and “inverse” deformations do not produce an identity transform.
Small deformation models do not necessarily enforce a one-to-one
mapping, particularly if the model assumes the displacements are
drawn from a multivariate Gaussian probability density.

The large-deformation or diffeomorphic setting is a much more
elegant framework. A diffeomorphism is a globally one-to-one
(objective) smooth and continuous mapping with derivatives that
are invertible (i.e. nonzero Jacobian determinant). If the mapping is
not diffeomorphic, then topology1 is not necessarily preserved. A
key element of a diffeomorphic setting is that it enforces
consistency under compositions of the deformations. A composi-
tion of two functions is essentially taking one function of the other
in order to produce a new function. For two functions, Φ2 and Φ1

this would be denoted by

Φ2BΦ1Bx ¼ Φ2ðΦ1ðxÞÞ ð2Þ

For deformations, the composition operation is achieved by
resampling one deformation field by another.2 If the deformations
are diffeomorphic, then the result of the composition will also be
diffeomorphic. In reality though, deformations are generally
represented discretely with a finite number of parameters, so there
may be some small violations—particularly if the composition is
done using low degree interpolation methods. Perfect (i.e.
infinitely dimensional) diffeomorphisms form a Lie group under
the composition operation, as they satisfy the requirements of
closure, associativity, inverse and identity (see Fig. 2).
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1 The word “topology” is used here in the same sense as in “Topological
Properties of Smooth Anatomical Maps” (Christensen et al., 1995).
2 Particular care is needed when dealing with the boundaries—

particularly if the boundary conditions are circulant.

1053-8119/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.neuroimage.2007.07.007

mailto:j.ashburner@fil.ion.ac.uk
http://dx.doi.org/10.1016/j.neuroimage.2007.07.007


The early diffeomorphic registration approaches were based on
the greedy “viscous fluid” registration method of Christensen et al.
(1994, 1996). In these models, finite difference methods are used to
solve the differential equations that model one image as it “flows”
to match the shape of the other. At the time, the advantage of these
methods was that they were able to account for large displacements
while ensuring that the topology of the warped image was
preserved. They also provided a useful foundation from which later
methods arose. Viscous fluid methods require the solutions to large
sets of partial differential equations. The earliest implementations
were computationally expensive because solving the equations
used successive over-relaxation. Such relaxation methods are
inefficient when there are large low frequency components to
estimate. Since then, a number of faster ways of solving the
differential equations have been devised. These include the use of
Fourier transforms to convolve with the impulse response of the
linear regularisation operator (Bro-Nielsen and Gramkow, 1996),
or by convolving with a separable approximation (Thirion, 1995).

More recent algorithms for large deformation registration aim to
find the smoothest possible solution. For example, the LDDMM
(large deformation diffeomorphic metric mapping) algorithm (Beg
et al., 2005) does not fix the deformation parameters once they have
been estimated. It continues to update them using a gradient descent
algorithm such that a geodesic distance measure is minimised. In
principle, such models could be parameterised by an initial
“momentum” field (Miller et al., 2006; Vaillant et al., 2004), which
fully specifies how the velocities – and hence the deformations –
evolve over unit time. Unfortunately though, the differential
equations involved are difficult to work with, and it is easier to
parameterise using a number of velocity fields corresponding to

different time periods over the course of the evolution of the
diffeomorphism. If u(t) is a velocity field at time t, then the
diffeomorphism evolves by

dΦ
dt

¼ uðtÞ ΦðtÞ
! "

ð3Þ

Diffeomorphisms are generated by initialising with an identity
transform (Φ(0) =x) and integrating over unit time to obtain Φ(1).

The framework described in this paper involves a single flow
(velocity) field, which remains constant over unit time. It is similar
to the log-Euclidean framework of Arsigny et al. (2006b,a). The
algorithm is called DARTEL, standing for “Diffeomorphic
Anatomical Registration using Exponentiated Lie algebra”.

DARTEL has the advantage, over the small deformation
setting, that the resulting deformations are diffeomorphic, easily
invertible and can be rapidly computed. It does, however, have a
number of disadvantages when compared to variable velocity
models. To further understand these limitations, one needs to
consider a single point in a brain as the deforming image evolves
over unit time. As this point passes different locations of the flow
field, then it will be assigned different velocities. Therefore, each
of the parameters of such a model will relate to a position in the
background space over which the brain deforms, rather than to
points within the brain itself. Each voxel in the flow field
corresponds to different brain structures at different times during
the propagation of the deforming image. Because there is no
simple association between a point in the flow field, with a point in
the brain, this makes the model parameterisation less ideally suited
to computational anatomy studies.

The parameterisation of the variable velocity framework has a
more useful physical interpretation, which relates to the velocity of

Fig. 1. Inversion and composition in a small deformation setting. Top-left: a
diffeomorphic deformation field. A displacement field was derived by
subtracting the identity transform: u(x)=Φ(x)−x. Top-right: an attempt at
obtaining an inverse by subtracting the displacement. Although a forward
transform may be one-to-one, an inverse obtained by subtracting the
displacement may not be. Bottom row: compositions of the forward and
“inverse” transformations. If the inverse was correct, then these would both
be identity transforms.

Fig. 2. Inversion and composition in a diffeomorphic setting. Top-left: a
forward deformation. Top-right: the corresponding inverse deformation.
Both the forward and inverse transforms are one-to-one. Bottom row:
compositions of the forward and inverse transformations produce deforma-
tions that are close to the identity transform.
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each point in the brain at each time during the course of the
evolution. Registration involves simultaneously minimising a mea-
sure of difference between the image and the warped template,
while also minimising an “energy” measure of the deformations
used to warp the template. This energy, often thought of as a
squared geodesic distance, is obtained by integrating the energy of
the velocity fields over unit time. The fixed velocity field used by
DARTEL has to encode the whole trajectory of an evolving
diffeomorphism. This constraint may force the diffeomorphism to
take very circuitous and high energy trajectories in order to achieve
good correspondence between images. In fact, some diffeomorphic
configurations, which would easily be achieved if velocities could
vary over time, are impossible to reach using DARTEL's constant
velocity framework.

A further limitation of the DARTEL model can be seen by
registering an image pair and then registering the same image pair,
but after first translating one of the images by a few pixels.
Providing translations are not explicitly penalised, an ideal
registration approach should produce deformation energy measures
that are the same in both cases. Unfortunately, this does not happen
within the fixed velocity DARTEL framework. Similarly, the shape
of the deforming template at particular times during the evolution
of the diffeomorphism is not invariant with respect to such an
initial translation.

In the Method section, the basic theory behind the constant velo-
city framework used by DARTELwill be covered. The remainder of
this section describes the algorithm that can be used to warp one
image to match another. This algorithm involves optimising an
objective function that consists of a prior term and a likelihood term.
Optimisation is done using a method that uses the first and second
derivatives of these terms, with respect to the parameterisation of the
deformation. The large number of parameters means that compu-
tationally efficient methods are needed for solving the equations, so
there is a specific focus on computationally efficient schemes that
can handle extremely large, if sparse, matrices. Although the
DARTEL model is technically inferior to variable velocity
diffeomorphic models, it does have practical advantages in terms
of the speed of execution.

The Results and discussion section applies the DARTEL regis-
tration scheme to 471 anatomical MR images. The resulting flow
fields are used in order to assess the level of internal consistency of
the method. The same 471 MR images are also brought into register
with a small-deformation model, and the parameterisation of the
small-deformation and DARTEL models is compared in terms of
how well the information encoded can be used by pattern recog-
nition procedures. A quantitative comparison of fixed velocity
DARTEL registration with variable velocity diffeomorphic regis-
tration methods will be left for future work.

Method

The DARTEL model assumes a flow field (u) that remains constant over time. With this model, the differential equation describing the
evolution of a deformation is

dΦ
dt

¼ u ΦðtÞ
! "

ð4Þ

Generating a deformation involves starting with an identity transform (Φ(0) =x) and integrating over unit time to obtain Φ(1). The Euler
method is a simple integration approach, which involves computing new solutions after many successive small time-steps (h).

ΦðtþhÞ ¼ ΦðtÞ þ huðΦðtÞÞ ð5Þ

Each of these Euler steps is equivalent to

ΦðtþhÞ ¼ ðxþ huÞBΦðtÞ ð6Þ

The small deformation setting can be conceptualised as an Euler integration with a single time step. The use of a large number of small
time steps will produce a more accurate solution, such that the trajectory of the points follows a curved path over unit time (Fig. 3). For
example, with eight time steps, the Euler integration method is equivalent to

Φð1=8Þ ¼ xþ uðxÞ=8
Φð2=8Þ ¼ Φð1=8ÞBΦð1=8Þ

Φð3=8Þ ¼ Φð1=8ÞBΦð2=8Þ

v v
Φð8=8Þ ¼ Φð1=8ÞBΦð7=8Þ

ð7Þ

If the number of time steps is a power of two, then the solution can be determined by a scaling and squaring approach (Moler and Van Loan,
2003; Arsigny et al., 2006b,a).

Φð1=8Þ ¼ xþ uðxÞ=8
Φð1=4Þ ¼ Φð1=8ÞBΦð1=8Þ

Φð1=2Þ ¼ Φð1=4ÞBΦð1=4Þ

Φð1Þ ¼ Φð1=2ÞBΦð1=2Þ

ð8Þ

In practice, rather more than eight time steps would be used to compute a more accurate solution. In Group theory, the flow field may be
considered as a member of the Lie algebra, which is exponentiated to produce a deformation, which is a member of a Lie group. A useful
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Fig. 3. Points follow a curved trajectory as the differential equation is integrated.

Fig. 4. A scaling and squaring procedure can be used for computing a deformation by exponentiating a flow field (left), as well as an inverse deformation (right).

heuristic here is that the Jacobian of a deformation that conforms to an exponentiated flow field is always positive (in the same way that the
exponential of a real number is always positive). This ensures the mapping is diffeomorphic and, implicitly, assures that the forward and
inverse transformations can be generated from the same flow field (Fig. 4):

Φð1Þ ¼ ExpðuÞ ð9Þ

Inverse consistency (Christensen, 1999) is an area of interest within the field of image registration. The extreme case of an inconsistency
between a forward and inverse transformation is when the one-to-one mapping between the images breaks down. This can be avoided by
using a framework that is diffeomorphic. In order to implement inverse consistent algorithms, it is useful to be able to integrate backwards as
well as forwards (see Fig. 5). The inverse of the spatial transformation Φ(−1) can be achieved by backward integration

Φð%1=8Þ ¼ x% uðxÞ=8
Φð%1=4Þ ¼ Φð%1=8ÞBΦð%1=8Þ

Φð%1=2Þ ¼ Φð%1=4ÞBΦð%1=4Þ

Φð%1Þ ¼ Φð%1=2ÞBΦð%1=2Þ

ð10Þ

98 J. Ashburner / NeuroImage 38 (2007) 95–113



Fig. 5. A deformation at different times (top-left), shown next to the logarithms of the corresponding Jacobian determinants (top-right). A one-to-one mapping is
preserved, as illustrated by the Jacobian determinants being greater than zero. The bottom row shows a pair of images transformed with the deformations shown
at the top. Note that f (Φ(0)) (the undeformed version) matches g(Φ(−1)) and f (Φ(1)) matches g(Φ(0)). In general, g(Φ(t)) matches f (Φ(t+1)).

If Φ(0) =x (the identity transform) and sufficient time steps are used, then the following should hold within this framework.

Φð1ÞBΦð%1Þ ¼ Φð%1ÞBΦð1Þ ¼ Φð0Þ ð11Þ

The derivatives (Jacobian matrices) of the deformations form a second order tensor field.

JΦ xð Þ ¼ jΦT
# $

Bx ¼

B/1ðxÞ
Bx1

B/1ðxÞ
Bx2

B/1ðxÞ
Bx3

B/2ðxÞ
Bx1

B/2ðxÞ
Bx2

B/2ðxÞ
Bx3

B/3ðxÞ
Bx1

B/3ðxÞ
Bx2

B/3ðxÞ
Bx3

0

BBBBBB@

1

CCCCCCA
ð12Þ

These Jacobian matrices encode the local stretching, shearing and rotating of the deformation field. Useful measures that can be derived from
the matrices are the determinants, which indicate relative volumes before and after spatially transforming. A region of negative determinants
would indicate that the one-to-one mapping has been lost.
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If ΦC is the deformation that results from the composition of two deformations ΦB and ΦA (i.e. ΦC=ΦB○ΦA), then the resulting Jacobian
field can be obtained by the matrix multiplication JΦC

= (JΦB
○ΦA) JΦA

. This leads to a similar scaling and squaring approach that can be used
for computing the Jacobian matrices of deformations.

Optimisation

Image registration procedures use a mathematical model to explain the data. Such a model will contain a number of unknown parameters
that describe how an image is deformed. A true diffeomorphism has an infinite number of dimensions and is infinitely differential. The
implementation described here, and which is used to generate the examples, is based on a finite dimensional approximation for a fixed lattice.
Bi- or trilinear interpolation is used so that the functions can be treated as continuous, but this renders them differentiable only once. It would
be possible to use a higher-degree interpolation (see e.g. Thévenaz et al., 2000), but linear interpolation was used for speed. This discrete
parameterisation of the velocity field, u(x), can be considered as a linear combination of basis functions

uðxÞ ¼
X

i

viρiðxÞ ð13Þ

where v is a vector of coefficients and ρi (x) is the ith first degree B-spline basis function at position x. The algorithm is implemented so that
functions wrap around at the boundary, so as a point disappears off the right side of field of view, it will appear again on the left. Fixed or sliding
boundary conditions could also have been used, but boundaries that are completely free to move are precluded because the necessary
compositions can not easily be performed.

The aim is to estimate the single “best” set of values for these parameters (v). The objective function, which is the measure of “goodness”,
is formulated as the most probable deformation, given the data (D).

p vjDð Þ ¼ pðDjvÞpðvÞ
pðDÞ ð14Þ

This posterior probability of the parameters given the image data (p(v|D)) is proportional to the probability of the image data given the
parameters (p(D|v)—the likelihood), times the prior probability of the parameters (p(v)). The probability of the data (p(D)) is a constant.
The objective is to find the most probable parameter values and not the actual probability density, so this factor is ignored. The single
most probable estimate of the parameters is known as the maximum a posteriori (MAP) estimate. There is a monotonic relationship
between a value and its logarithm and, in practice, the objective function is normally the logarithm of the probability (in which case it is
maximised) or the negative logarithm (which is minimised). It can therefore be considered as the sum of two terms: a prior term and a
likelihood term.

%log pðv; DÞ ¼ %log pðvÞ % log pðDjvÞ ð15Þ

or

EðvÞ ¼ E1ðvÞ þ E2ðvÞ ð16Þ

Many nonlinear registration approaches search for a maximum a posteriori (MAP) estimate of the parameters defining the warps, which
corresponds to the mode of the probability density. In practice, there are a number of technical difficulties that can preclude a simple Bayesian
interpretation of the problem, as probability densities of continuous functions do not really exist. For this reason, it is more straightforward to
interpret registration as a minimum energy estimation procedure. There are many optimisation algorithms that try to find the mode, but most of
them only perform a local search. It is possible to use relatively simple strategies for fitting models with few parameters, but as the number of
parameters increases, the time required to estimate them will increase dramatically.

The Levenberg–Marquardt (LM) algorithm is a very good general purpose optimisation strategy (see Press et al. (1992) for more
information). The procedure is a local optimisation, so it needs reasonable initial starting estimates. It uses an iterative scheme to update the
parameter estimates in such a way that the objective function is usually improved each time. Each iteration requires the first and second
derivatives of the objective function, with respect to the parameters. In the following scheme, I is an identity matrix and ζ is a scaling factor.
The choice of ζ is a trade-off between speed of convergence and stability. A value of zero for ζ gives the Newton–Raphson or Gauss–Newton
optimisation scheme, which may be unstable if the probability density is not well approximated by a Gaussian. Increasing ζ will slow down
the convergence, but increase the stability of the algorithm.

vðnþ1Þ ¼ vðnÞ % B2EðvÞ
Bv2

%%%
vðnÞ

þ fI
& '%1

BEðvÞ
Bv

%%%
vðnÞ

ð17Þ

The prior term and its derivatives

The prior term reflects the prior probability of a deformation occurring—effectively biasing the deformations to be realistic. The
probability of the parameterisation of a flow field (v) can most easily be approximated by a probability density that is close to a zero-mean
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multivariate Gaussian distribution. In the maximum entropy characterisation of Pennec et al. (2006), the matrix H is known as a
concentration matrix and is analogous to the inverse of a covariance matrix. Z is a normalisation constant.

p vð Þ ¼ 1
Z
exp % 1

2
vTHv

& '
ð18Þ

By taking the negative logarithm of this probability, we obtain

E1 vð Þ ¼ %log p vð Þ ¼ log Z þ 1
2
vTHv ð19Þ

The first and second derivatives of E1(v), with respect to the parameters, are required for the registration. These are

BE1

Bv
¼ Hv and

B2E1

Bv2
¼ H ð20Þ

In most implementations, the matrix H has a simple numerical form that assumes a similar amount of variability in all spatial locations. In
reality, the best model of anatomical variability is very likely to differ from region to region (Lester et al., 1999), so a matrix that models
nonstationary variability could, in theory, be a more accurate model. If the true variability of the parameters is known (somehow derived from
a large number of subjects), then a suitable model could be determined empirically. The choice of prior will influence how the estimated
deformations interpolate between features in the images. As this variability is unknown, the implementation of DARTEL is currently able to
use a variety of priors (defined by matrix H). These are based on either membrane, bending or linear elastic energy.

• The membrane energy model is also known as the Laplacian model and is given in 3D by

E1 vð Þ ¼ k
2

Z

xaX

X3

i¼1

X3

j¼1

BuiðxÞ
Bxj

& '2

dx ð21Þ

In the above equations, λ is a constant that encodes the amount of variability. Larger values of λ indicate that the flow field should be
smoother. The matrixH is very large and sparse, but because the operation ofHv is actually a convolution, it is relatively straightforward to
compute. The function with which v is convolved can be derived from the rows of H. For example, in the case of the membrane energy
model in two dimensions, Hv would be obtained by convolving the horizontal and vertical components of v by

0 %kd%2
1 0

%kd%2
2 2kðd%2

1 þ d%2
2 Þ %kd%2

2
0 %kd%2

1 0

0

@

1

A ð22Þ

where δ1 is the height of a voxel and δ2 is the width.
• The bending energy (biharmonic or thin plate model) is given by

E1 vð Þ ¼ k
2

Z

xaX

X3

i¼1

X3

j¼1

X3

k¼1

B2uiðxÞ
BxjBxk

& '2

dx ð23Þ

In two dimensions, the multiplication Hv is obtained by convolving each component of v with

0 0 kd%4
1 0 0

0 2kd%2
1 d%2

2 %4kd%2
1 ðd%2

1 þ d%2
2 Þ 2kd%2

1 d%2
2 0

kd%4
2 %4kd%2

2 ðd%2
1 þ d%2

2 Þ kð6d%4
1 þ 6d%4

2 þ 8d%2
1 d%2

2 Þ %4kd%2
2 ðd%2

1 þ d%2
2 Þ kd%4

2
0 2kd%2

1 d%2
2 %4kd%2

1 ðd%2
1 þ d%2

2 Þ 2kd%2
1 d%2

2 0
0 0 kd%4

1 0 0

0

BBBB@

1

CCCCA
ð24Þ

• The linear elastic energy is given by

E1 vð Þ ¼ 1
2

Z

xaX

X3

j¼1

X3

k¼1

k
BujðxÞ
Bxj

& '
BukðxÞ
Bxk

& '
þ μ

2
BujðxÞ
Bxk

þ BukðxÞ
Bxj

& '2
 !

dx ð25Þ

Here, λ encodes the variance of the trace of the Jacobian matrix (the divergence) at each point in v. Larger values will tend to cause volumes
to be preserved during the transformation. Jacobian matrices can be decomposed into the sum of symmetric and skew-symmetric (anti-
symmetric) matrices. The μ parameter encodes the amount of variance in the elements of the symmetric component and this tends toward
penalising scaling and shearing, while allowing rotations to occur more freely. Again, the multiplication Hv is performed as a convolution
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operation (see Fig. 6), but it is more complex as it involves mixing computations on the vertical and horizontal components of the flow
fields. In order to obtain the convolved vertical component, it is convolved with

0 %ð2μþ kÞd%2
1 0

%μd%2
2 μð4d%2

1 þ 2d%2
2 Þ þ 2kd%2

1 %μd%2
2

0 %ð2μþ kÞd%2
1 0

0

@

1

A ð26Þ

and this is added to the horizontal component convolved with

%μþ k
4

d%1
1 d%1

2 0
μþ k
4

d%1
1 d%1

2

0 0 0
μþ k
4

d%1
1 d%1

2 0 %μþ k
4

d%1
1 d%1

2

0

BB@

1

CCA ð27Þ

The convolved horizontal component is by convolving the vertical component with the array in Eq. (27) and adding it to the horizontal
component convolved with

0 %μd%2
1 0

%ð2μþ kÞd%2
2 μð4d%2

2 þ 2d%2
1 Þ þ 2kd%2

2 %ð2μþ kÞd%2
2

0 %μd%2
1 0

0

@

1

A ð28Þ

Currently, the best form of regularisation is unknown. Future work will attempt to learn the optimal settings for the priors from image data
itself. In principle, this is just a Type-II Maximum Likelihood problem (with Laplace approximations). Unfortunately, there are a number of
technical challenges to overcome before the approach could become practically feasible for problems of this scale.

The likelihood term and its derivatives

This section only considers a likelihood term based upon the mean-squared difference between a pair of images. The model assumes that
the individual image g is generated from the template image f by

gðxÞ ¼ f ðΦð1ÞðxÞÞ þ !ðxÞ ð29Þ

where ϵ(x) is drawn from a zero mean Gaussian distribution, which is assumed to be independent and identically distributed over voxels.
Ignoring the constant terms and assuming the variance of ϵ(x) is one, the negative log-likelihood is obtained by summing over the centres of
the i voxels

E2 ¼
1
2

XI

i¼1

 

gi % fi Φð1Þ
! "!2

ð30Þ

where fi (Φ(1)) denotes the ith voxel of the warped template.

Fig. 6. The H matrix for computing the linear elastic energy of a 2D 6×6 flow field, with wrapped boundaries. This matrix uses a value for μ that is twice that
used for λ.
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For clarity, in what follows, the dependence of the flow and other quantities on location x is dropped. The diffeomorphic mapping,Φ(1) is the
solution to Φ ˙=u(Φ) at unit time. The starting point of the integration is an identity transform (Φ(0) =x). For ease of terminology, this section
assumes that the images, flow fields, deformations, etc., are all smooth continuous fields. Implementational details relating to interpolation and
boundary conditions are ignored.

The first derivatives of the likelihood term, with respect to changes in velocity are a vector field b(x). Within a continuous time
representation, the first derivative at any point is given by

b ¼
Z 1

t¼0
jJð%tÞ

Φ jðgð%tÞ % f ð1%tÞÞðjf ð1%tÞÞdt ð31Þ

where g(−t)≡g(Φ(−t)), and f (1−t)≡ f (Φ(1−t))≡ f (Φ(1)○Φ(−t))≡ f (Φ(− t)○Φ(1)). The image gradients and Jacobian matrices are denoted by the
j and J operators. At each point in a vector field, there is assumed to be a column vector of values.

The second derivatives can be treated as a symmetric second order tensor field A(x). Ignoring second derivatives in the image data,
these can be obtained in a similar way (see Appendix A).

A ¼
Z 1

t¼0
jJð%tÞ

Φ jðjf ð1%tÞÞT ðjf ð1%tÞÞdt ð32Þ

Within a discrete time representation, the registration can be conceptualised as a series of intermediate small deformation registration
steps, which are optimised simultaneously. The first and second derivatives are then

b ¼ 1
N

XN−1

n¼0

jJð%n=NÞ
Φ j gð%n=NÞ % f ððN%nÞ=NÞ

! "

& ðjf ððN%1%nÞ=NÞÞBΦð1=NÞ
! "

ð33Þ

A ¼ 1
N

XN−1

n¼0

jJð%n=NÞ
Φ j ðjf ððN%1%nÞ=NÞÞBΦð1=NÞ

! "T

& ðjf ððN%1%nÞ=NÞÞBΦð1=NÞ
! "

ð34Þ

where g(−n/N)≡g(Φ(−n/N)). Note that if N=1, these are equivalent to the derivatives for registration within the small-deformation setting.
The DARTEL algorithm uses a recursive procedure for computing an approximation to the derivatives, using a value for N which

is a power of two (N=2K). It begins by first computing Φ>(1) and the Jacobian matrix JΦ
(1), according to the current estimates of the

flow field. This is done by a scaling and squaring procedure, which begins with a small deformation approximation.

Φð1=2K Þ ¼ xþ 1
2K

u ð35Þ

Jð1=2
K Þ

Φ ¼ Iþ 1
2K

Ju ð36Þ

Then for k=0..K−1 steps, the small deformation approximation is recursively squared in order to generate Φ(1) and JΦ
(1).

Φð2kþ1=2K Þ ¼ Φð1ÞBΦð2k=2K Þ ð37Þ

Jð2
kþ1=2K Þ

Φ ¼ ðJð2
k=2K Þ

Φ ÞBΦð2k=2K Þ
! "

Jð2
k=2K Þ

Φ

! "
ð38Þ

The first and second derivatives are initialised by

bð0Þ ¼ 1
2K

gð0Þ % f ð1Þ
! "

h ð39Þ

Að0Þ ¼ 1
2K

hTh ð40Þ

where

h ¼ ðJð1ÞΦ ÞðJð1=2
K Þ

Φ Þ%1
! "T

ðjf ð0ÞÞBΦð1Þ
! "

ð41Þ
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3 For each row, the magnitude of the diagonal element must be greater than the sum of the magnitudes of the off-diagonal elements.

Backward transforms are initialised by

Φð%1=2K Þ ¼ x% 1
2K

u ð42Þ

Jð%1=2K Þ
Φ ¼ I% 1

2K
Ju ð43Þ

Then the following are computed recursively for k=0..K–1 steps

bðkþ1Þ ¼ bðkÞ þ jJð%2k=2K Þ
Φ j Jð%2k=2K Þ

Φ

! "T
bðkÞBΦð%2k=2K Þ

! "
ð44Þ

Aðkþ1Þ¼AðkÞþ jJð%2k=2K Þ
Φ j Jð%2k=2K Þ

Φ

! "T
AðkÞBΦð%2k=2K Þ
! "

Jð%2k=2K Þ
Φ

! "
ð45Þ

Φð%2kþ1=2K Þ ¼ Φð%2k=2K ÞBΦð%2k=2K Þ ð46Þ

Jð%2kþ1=2K Þ
Φ ¼ ðJð%2k=2K Þ

Φ ÞBΦð%2k=2K Þ
! "

Jð%2k=2K Þ
Φ

! "
ð47Þ

If K=0, the derivatives are exactly equivalent to those used for small deformation registration. Larger values of K produce the derivatives
for diffeomorphic registration. In practice, these recursively computed derivatives are only an approximation because of the effect of
iteratively resampling (Eqs. (44) and (45)). In particular, it is not really clear how to optimally and efficiently resample (interpolate) the tensor
field A(x) such that the positive definite (and other) properties are best retained (Pennec et al., 2006; Arsigny et al., 2006c). Currently, the
individual scalar fields that comprise both b(x) and A(x) are sampled using trilinear interpolation.

DARTEL has been implemented to include an option for inverse consistent registration. In this formulation, the likelihood part of the
objective function is

E2 ¼
1
2

XI

i¼1

gi % fiðΦð1ÞÞ
! "2

þ 1
2

XI

i¼1

fi % giðΦð%1ÞÞ
! "2

ð48Þ

This inverse consistency was achieved bymaking the first and second derivatives exactly symmetric by adding them to derivatives computed by
integrating the other way. This forward integration is very similar to that shown for backward integration, except for a few small changes. The
results of such a formulation are exactly inverse consistent spatial transformations.

This section has treated the first and second derivatives as smooth continuous vector and tensor fields. In the next section, the vector field
of first derivatives will be treated as a column vector (b) and the tensor field of second derivatives as a large sparse matrix (A). This discrete
representation corresponds to sampling the fields on a fine regular grid and assumes a good lattice approximation.

Solving the equations

Each Levenberg–Marquardt iteration involves the update

vðnþ1Þ ¼ vðnÞ % ðAþHþ fIÞ%1ðbþHvðnÞÞ ð49Þ
This requires the solution to the following set of equations

ðAþHþ fIÞ%1 bþHvðnÞ
! "

ð50Þ

The model is very high-dimensional, so storing a full matrix of second derivatives is not possible because of memory limitations. For this
reason, the optimisation uses a method for solving systems of sparse equations. Initial attempts used a conjugate gradient approach (Gilbert et
al., 1992), but this was found to be slow. Instead, a full multigrid (FMG) approach (Haber and Modersitzki, 2006) is used to solve the update
equations. This is based upon the explanations in Chapter 19 of Press et al. (1992).

FMG approaches are based on relaxation methods, which are performed at multiple scales in order to enhance the speed. Relaxation
methods for obtaining a least-squares solution to a set of equations of the form Mw=c involve splitting the matrix into M=E+F, where E is
easy to invert and F is the remainder. The procedures are iterative and involve assigning initial estimates for w, and then updating at iteration
n according to

wðnþ1Þ ¼ E%1 c% FwðnÞ
! "

ð51Þ

Usually, E is simply a diagonal matrix. ProvidingM is strictly diagonally dominant3, then the updates of Eq. (51) are guaranteed to converge.
This is the case when using a membrane energy model for the prior potential.
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A different update strategy is required if diagonal dominance conditions are not satisfied, as is the case when modelling the prior potential
with bending energy or linear elasticity. This can be derived by re-writing Eq. (51) as

wðnþ1Þ ¼ wðnÞ þ E%1 c% FwðnÞ % EwðnÞ
! "

ð52Þ

ProvidingM is positive definite, then the following regularised update strategy will ensure convergence, where s is chosen to ensure diagonal
dominance of M+ sI. This is a similar stabilising strategy to that used by Levenberg–Marquardt optimisation.

wðnþ1Þ ¼ wðnÞ þ ðEþ sIÞ%1 c%MwðnÞ
! "

ð53Þ

In practice, the updates are performed in place so that the updated values can be used immediately in the current iteration. This is the
Gauss–Seidel method, as opposed to Jacobi's method, which uses only the values of w from the previous iteration. The Gauss–Seidel method
is faster than Jacobi's method and also requires less memory (only one copy of w instead of two). The ordering of the updates of a Gauss–
Siedel iteration can be tuned to optimise performance. A red–black checkerboard updating scheme is best if using membrane energy. This
involves alternating between updates of all the “red” voxels and then all the “black” voxels. For other prior potential models, the updates can
be done by sweeping through w along a variety of different directions.

In most descriptions of relaxation methods, the E matrix is diagonal, but this is not the case in the current implementation. For volumetric
registration, inverting E consists of inverting a series of symmetric 3×3 matrices, whereas a series of 2×2 matrices would be inverted for a
2D implementation (see Fig. 7).

Relaxation methods take a very long time to estimate the low spatial frequency components of w, whereas the higher frequency
components are estimated relatively quickly. Multigrid methods are a way of achieving more rapid convergence by using relaxation methods
at various different spatial scales. The full-multigrid (FMG) method is a recursive approach, which involves cycling through the scales. Press
et al. (1992) describe the full-multigrid method for solving a relatively simple problem. This algorithm was extended so that the FMG method
can be applied to 3D images of any dimensions, with circulant boundary conditions and more complex second derivatives of the types
described above. The full details of the approach are omitted, but a brief summary of the procedure is illustrated in Fig. 8 and some of the
ideas are elaborated below.

Multigrid methods usually begin by estimating the field at the coarsest scale, and then zooming this coarse estimate to the next higher
resolution (prolongation). The lower frequencies of the zoomed version tend to be fairly accurate, but the high-frequencies require a few
iterations of relaxation to refine them. This refined version is then prolongated to the next higher resolution and so on until the highest
resolution solution is reached.

Such a single ascent through the various scales is rarely enough to achieve an accurate solution. Further refinement is needed, and this is
obtained by computing the field that needs to be added to w, such that the defect (the residuals, c−Mw) is minimised. This is achieved by

Fig. 7. This figure shows a schematic of the matrices involved in the optimisation. Because of the large dimensions involved, the matrices shown here are only
for 2D registration of 4×4 images. Top-left: the H matrix (for linear elasticity, where μ=1 and λ=0), which is used to regularise the registration. Top-right:
the A matrix that encodes the second derivatives of the likelihood term. Bottom-left: the E matrix, which contains selected diagonals of M (where M consists
of A+H+ζI). Inverting this matrix involves inverting a series of symmetric 2×2 matrices. Bottom-right: the F matrix (M−E).
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computing the defect and restricting it to a coarser grid. At this coarse scale, it serves as the c vector. The equations are solved on this grid,
and the solution is prolongated back to a finer grid and added to the existing w. This step reduces more of the low frequency signal in the
defect. A few relaxation steps are then performed in order to reduce the high frequencies. This procedure can be cycled through a number of
times, each time reducing the defect.

Solving the equations on the coarse grid would involve restricting the defect to an even coarser grid, solving, prolongating the coarser
solution and adding it to the coarse solution. This would be done at all spatial scales, but at the coarsest scale, the solution can be obtained
directly because the matrices are much smaller.

Fig. 8. A schematic of the FMG algorithm for two cycles and four different scales. The algorithm proceeds from left to right. The different heights of the boxes
indicate the grid coarseness, where the coarsest grid is at the bottom, and the finest at the top. (A) A coarse solution for w is interpolated up to the resolution of the
current grid (prolongation), and added to the current estimate for w. This solution is refined by a few relaxation iterations, and the residuals (defect) computed.
This defect is then projected down to a coarser grid (restriction) for use as the c vector in the next step. (B) A coarse solution for w is prolongated to the current
grid and added to the current w. Relaxation is used to refine the solution, before it is prolongated for use in the next step. (C) The c vector is a restricted version of
the residuals from the previous step. The initial estimate for w is uniformly zero, but this is refined by relaxation. The residuals are computed, and these restricted
to a coarser grid for use as the c vector in the next step. (E) An exact solution is obtained on the coarsest grid.

Results and discussion

Evaluation of warping methods is a complex area. Generally,
the results of an evaluation are specific only to the data used to
evaluate the model. MR images vary a great deal with different
subjects, field strengths, scanners, sequences, etc., so a model that
is good for one set of data may not be appropriate for another.
Validation should therefore relate to both the data and the
algorithm. The question should be about whether it is appropriate
to apply a model to a data set, given the assumptions made by the
model.

Very soon, the Non-rigid Image Registration Evaluation
Project (Christensen et al., 2006) will be ready for use. This
framework will allow the developers of nonlinear registration
algorithms to compare their algorithms on the same data sets, using
the same measures of accuracy. Currently, most developers use
their own data and measures to assess registration accuracy, which
precludes proper comparisons between competing models.

There are various approaches that are currently used for
evaluating registration models. An assessment based on colocalisa-
tion of manually defined landmarks would be a useful validation
strategy, because it allows the models to be compared with human
expertise (Hellier et al., 2001, 2002, 2003). The use of simulated
images with known underlying deformations is not really appro-

priate for proper validation of nonlinear registration methods. This
is particularly true if the deformation model is the same for the
simulations as it is for the registration, because this only illustrates
whether or not the optimisation strategy works. Another commonly
used form of “evaluation” involves examining the residual diffe-
rence after registration. Such a strategy would ignore the possi-
bility of over-fitting and tends to favour those models with less
regularisation.

The appropriateness of an evaluation depends on the particular
application that the deformations are to be used for. For example, if
the application was spatial normalisation of functional images of
different subjects, then the most appropriate evaluation may be
based on assessing the sensitivity of voxel-wise statistical tests
(Gee et al., 1997; Miller et al., 2005). Because the warping
procedure is based only on structural information, it is blind to the
locations of functional activation. If the locations of activations can
be brought into close correspondence in different subjects, then it is
safe to say that the spatial normalisation procedure works well.

Another application of intersubject registration may involve
identifying shape differences among populations of subjects. In
this case, the usefulness of the warping algorithm could be
assessed by how well the deformation fields can be used to
distinguish between the populations (Lao et al., 2004). This
approach can be considered as forms of cross-validation, because it
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assesses how well the registration helps to predict additional
information that it is not explicitly provided with. This is the main
evaluation strategy described in this section.

Group-wise registration

Instead of simply matching a pair of images, the objective of
intersubject registration is often to align the images of multiple
subjects. This is sometimes done by registering all the images with
a single template image. Such a procedure would produce different
results depending upon the choice of template, so this is an area
where internal consistency should be considered. A more optimal
template would be some form of average (Avants and Gee, 2004;
Davis et al., 2004; Lorenzen et al., 2004). Registering such a
template with a brain image generally requires smaller (and
therefore less error prone) deformations than would be necessary
for registering to an unusually shaped template. Such averages
generally lack some of the detail present in the individual subjects'
images. Structures that are more difficult to match are generally
slightly blurred in the average, whereas those structures that can be
more reliably matched are sharper. Such an average generated from
a large population of subjects would be ideal for use as a general
purpose template.

Four hundred and seventy-one T1 weighted MRI scans were
used to create such a template. Details of acquisition parameters,
etc. can be found in Good et al. (2001). This experiment used the
same 465 scans, plus a few others. The subjects consisted of
264 males and 207 females, with ages ranging from 17 to 79. The
mean age was 31.8 (see Fig. 9 for more details).

These data were segmented using the algorithm in SPM5
(Ashburner and Friston, 2005). This procedure includes a com-
ponent whereby pre-defined tissue probability maps (generated
from a large number of subjects) are approximately registered with
each image undergoing segmentation. A rigid body transformation
was extracted from the nonlinear deformations estimated by the
segmentation algorithm using a Procrustes method, weighted by a
grey matter tissue probability map (Ashburner et al., 1998). These
rigid-body transformations were used to reslice tissue probability
images of grey and white matter for each subject, such that they
were in approximate alignment. The resliced images were of

size 121×145×121 voxels, and had an isotropic resolution of
1.5 mm.

To illustrate an application of internally consistent registration,
the DARTEL algorithm is demonstrated through the construction
of average image templates. The scheme involves iterations of
DARTEL to map the scans above to their average, to form a new
average. This cycle is repeated 18 times in the hope of improving
the spatial precision of the average and selecting those features that
are conserved and are informative for registering over subjects.

Intensity averages of the grey and white matter images were
generated to serve as an initial template for DARTEL registration
(see top row of Fig. 10). An inverse-consistent formulation4 was
used to register each individual brain with the template. The
likelihood term of the registration was based on the sum of squared
difference between the grey matter and grey matter mean, plus that
of the white matter and that of the remainder (i.e. one minus grey
and white). The prior term was based on linear elasticity, with a
value for μ that was 10 times greater than the value for λ. A value
for K of 6 was used, which would be analogous to an Euler
integration scheme using 64 time points. Registration was done
with eighteen Gauss–Newton iterations and, after every three
iterations, the mean was re-computed. For the first six iterations, μ
was set to 0.5. For the second six, it was 0.25, and for the last six, it
was set to 0.125.

The initial template was quite smooth, but it became sharper
each time it was re-generated, resulting in a natural coarse-to-fine
registration scheme (see Fig. 10). The aim of the heavier
regularisation in the early iterations was to avoid some of the
potential local minima. Registration of all 471 images took 2
weeks on a standard 3 year old desktop PC5 Spatially normalised
images of selected subjects are shown in Fig. 11.

The whole procedure was repeated in an identical way, except
that a small deformation setting was used. All settings were
identical, except that K was set to zero in order to achieve small
deformation registrations. The resulting displacement fields were
later compared with those generated using the diffeomorphic
setting.

Exponentiation

Computational precision is finite. For example, using double
precision floating point representation (64 bits), a value of about 1+
2.2×10−16 is indistinguishable from a value of 1. Similarly, for

Fig. 9. The age distribution of the 471 subjects.

4 From a generative modelling perspective, it would have been more
appropriate to use an asymmetric formulation whereby the template was
warped to match each individual image. The objective, however, was to
demonstrate the ease with which exactly inverse consistent registration
could be achieved with DARTEL. Within the functional imaging field, it is
also common practice to “spatially normalise” by warping the individual
images to match a common template, rather than match the template to the
individual images. The recommended strategy would normally be to use the
correct asymmetric model.
5 A single iteration of the asymmetric formulation of DARTEL is rather

faster than the symmetric formulation. On the same PC, each iteration (with
K=6) takes 1 min. An iteration of the small deformation model (K=0) is
faster than this, taking about 8.7 s. Much of the work in many current
registration methods consists of convolving gradients with the Green's
function of the regularisation operator. In three-dimensions, this requires six
3D Fourier transforms. To obtain an idea of the speed of the PC, the
MATLAB fftn function requires 8 s to compute these six Fourier transforms
on a 128×128×128 volume.
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single precision representations (32 bits), the relative accuracy is
about 1.1×10−7. For this reason, a scaling and squaring algorithm
for exponentiating a deformation can only involve squaring a finite
number of times. Exponentiating with too many squaring steps
leads to numerical problems. The ensuing challenge is to determine
a suitable number (K) of steps.

A typical flow field used for matching brains was exponen-
tiated using a range of values of K. Image sampling during each
squaring step was done using trilinear interpolation. The root-
mean squared (RMS) difference between the deformations derived
using K steps and K−1 steps was then computed. An optimal
value for K was chosen around the point where the RMS
difference was minimal. The results are plotted in Fig. 12,
showing that, for these data and using single precision floating
point representations, a value of around 6 or 7 appears to be
optimal (i.e. 64 to 128 time steps).

Inverse consistency

This section assesses the inverse consistency of the deforma-
tions. The composition of a transform with its inverse should result
in an identity transform. In practice, this is rarely achieved exactly
because of the discrete representation of the deformations. The
resulting disparity (with the identity transform) was compared with
the inverse consistency that would be achieved by using a small
deformation approximation.

A typical flow field is exponentiated to produce a forward
deformation Φ(1), and the negative of the flow field is expo-
nentiated to produce the inverse deformation Φ(−1). Six squaring
steps (i.e. 64 time points) were used during the exponentiation.
These were composed both ways (i.e. Φ(1)○Φ(−1) and Φ(−1)○Φ(1))
and the mean and maximum RMS deviation from an identity
transform was measured. The RMS differences were found to be

Fig. 10. This figure shows the intensity averages of the grey (left) and white (right) matter images after different numbers of iterations. The top row shows the
average after initial rigid-body alignment. The middle row shows the images after three iterations, and the bottom row shows them after all 18 iterations.
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0.023 and 0.022 voxels (0.034 and 0.032 mm), and the maximum
differences anywhere within the volumes were 0.40 and 0.30
voxels.

A small deformation inverse was generated by 2x−Φ(1), and this
was composed both ways with Φ(1). Similarly, (2x−Φ(−1))○Φ(−1)

and Φ(−1)○ (2x−Φ(−1)) were computed. The RMS deviations of
these small deformation approximations from the identity were 0.15,
0.16, 0.16 and 0.17 voxels, and the maximum differences were 2.4,
3.4, 2.5 and 4.0 voxels.

This demonstrates a clear advantage of the current framework
over that of the small deformation setting.

Kernel pattern recognition

In this section, we address one aspect of validity using pattern
recognition schemes. The idea here is that large-scale deformations
should capture or encode relevant and important anatomical
features. This means that we can use classification performance
as a surrogate measure of the quality of the features encoded by
DARTEL. To demonstrate this validation approach, support-vector
machines were used to classify images according to sex, and
relevance-vector machines to estimate the ages of subjects based
upon their images. In brief, the assessment is of whether the
diffeomorphic setting will enable pattern recognition approaches to
attain better performance, relative to the small-deformation setting.
Clearly, this does not represent an exhaustive validation of
DARTEL; however, it does show how one can establish the utility
of DARTEL in the context of pattern recognition problems.

The first challenge was to predict the sexes of the subjects. An
off-the-shelf linear support vector classification (SVC) algorithm6

was used (setting C, the regularisation constant, to infinity). The
kernel matrix was generated from inner products of the flow fields,
such that

K ¼ VTHV ð54Þ

where V is a matrix, with each column containing the parameters of
the flow field for a subject. H is as in Eq. (19), and encodes linear
elasticity with μ=1 and λ=0.

Cross-validation (with smoothing) was used to assess the
classification accuracy. This involved training with a random
selection of 400 of the subjects, and then making predictions about
the remaining 71 subjects. Training and testing were done by
picking out the appropriate rows and columns of the K matrix for
the whole data set. Accuracy was assessed by how well the
predictions matched known information about those 71 subjects.
Cross-validation was repeated 50 times in order to obtain a more
precise measure of accuracy.

Nonlinear classification was also performed using a radial basis
function (RBF) classifier. The “kernel trick”7 was used to convert
the inner products into distance measures, which were then used to
compute the radial basis function kernels. For flow fields para-
meterised by vA and vB, the value in the corresponding element of
the kernel matrix is

exp % 1
2r2

ðvA % vBÞTH vA % vBð Þ
'&

ð55Þ

A range of values for σ2 were tried, which varied from half the
variance of the distances, through to 32 times this variance. Results
are shown in Table 1.

7 The “kernel trick” is based on (vA−vB)T H(vA−vB) being equivalent to
vA
THvA+vB

THvB−2vATHvB, so the required distances can be derived from the
inner products. Note that H is symmetric.

Fig. 11. The left panel shows rigid-body aligned grey matter tissue probability maps of four subjects: an 18 year old female (top left), a 79 year old female (top
right), a 17 year old male (bottom left) and a 67 year old male (bottom right). These represent the extremes in age of the subjects. The right panel shows the same
subjects data, but after spatial normalisation by warping to their average using the DARTEL algorithm.

6 The quadratic programming algorithm was the implementation of A. J.
Smola, using the wrapper written by R. Vanderbei and S. Gunn. It can be
downloaded from http://www.isis.ecs.soton.ac.uk/isystems/kernel/.
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A virtually identical procedure was repeated, but using the
displacement fields derived from a small deformation setting. The
objective was to compare the classification accuracy in the
diffeomorphic setting, with the accuracy obtained from a
comparable small-deformation model. Cross-validation was done
for linear, as well as RBF classification, and the results are shown
in Table 2. Overall, the DARTEL registration produced slightly
more accurate results than the small deformation model, but the
improvement was only in the region of about half of a percent
and may not be significant.

The second challenge involved a comparison of how accurately
the subjects' ages could be predicted both with and without using the
diffeomorphic setting. Relevance-vector regression (Tipping, 2001)
was used for making the predictions. This approach is based on
kernel matrices similar to those employed by SVMs, and the kernels
that were used were the same as those for the sex classification.
Cross-validation was performed in a similar way to that for the
classification (i.e. repeatedly training with 400 scans and testing
with 71—repeating 50 times).

Both linear and RBF regression were performed, both for small
deformation and diffeomorphic models, and the results reported as
the root mean squared error (in years) and as correlation co-

efficients. Brain shape changes with age tend to require higher
spatial frequency distortions to encode them (cortical thinning,
ventricular enlargements, etc.) than the sex effects (total brain size
encodes much of the sex differences). This means that predicting
the ages of subjects may be a better test for the high-spatial
frequency deformations. The results of these tests are presented in
Table 3. A plot of true ages, versus estimated ages using the
diffeomorphic framework with the optimal RBF regression is
shown in Fig. 13. The small deformation model gave slightly better
predictions for linear regression, whereas the predictions were
slightly more accurate for the diffeomorphic model when a RBF
kernel was used. Again, the differences are small and may not be
significant.

The constant velocity framework of DARTEL may limit
the power of using such flow fields with pattern recognition
approaches. Others have suggested a variable velocity framework
for computational anatomy, whereby the analyses are based upon
“initial momentum” maps (Miller et al., 2006; Vaillant et al., 2004).
Future work will evaluate DARTEL with respect to a variable
velocity registration strategy, and examine the feasibility of using
DARTEL registration results to approximate such initial momen-
tum maps.

Conclusions

In this paper, we have described DARTEL, a principled and
efficient diffeomorphic framework for registering images. Opti-
misation is performed by a Levenberg–Marquardt strategy, and

Fig. 12. Determining the optimal number of squaring steps by finding the
value of K that produces the lowest RMS difference between deformations
generated with K and K−1 squaring steps. The RMS difference is given in
units of voxels.

Table 1
Sex prediction from the diffeomorphic model

Percent M
identified
as M

Percent F
identified
as F

Percent
classed
as M
being M

Percent
classed
as F
being F

Overall
percent
correct

κ statistic

Linear 91.0 83.6 87.4 88.1 87.7 0.749
RBF 0.5 91.0 80.7 85.5 87.7 86.4 0.722
RBF 1.0 91.1 82.4 86.6 88.1 87.2 0.739
RBF 2.0 91.1 82.9 86.9 88.2 87.5 0.745
RBF 4.0 91.0 83.2 87.1 88.1 87.5 0.746
RBF 8.0 91.0 83.3 87.2 88.1 87.5 0.747
RBF 16 91.0 83.4 87.2 88.1 87.6 0.748
RBF 32 91.0 83.4 87.2 88.2 87.6 0.748

Table 2
Sex prediction from the small deformation model

Percent M
identified
as M

Percent F
identified
as F

Percent
classed
as M
being M

Percent
classed
as F
being F

Overall
percent
correct

κ statistic

Linear 90.9 82.2 86.4 87.9 87.0 0.736
RBF 0.5 90.9 80.2 85.1 87.6 86.1 0.717
RBF 1.0 90.9 81.7 86.1 87.8 86.8 0.731
RBF 2.0 90.8 82.2 86.4 87.8 87.0 0.734
RBF 4.0 90.8 82.0 86.3 87.7 86.9 0.733
RBF 8.0 90.8 82.2 86.4 87.8 87.0 0.734
RBF 16 90.9 82.3 86.5 87.8 87.0 0.736
RBF 32 90.9 82.3 86.5 87.8 87.1 0.737

Table 3
Age prediction accuracy for both the small deformation and diffeomorphic
models

Small deformation Large deformation

RMS error Correlation RMS error Correlation

Linear 7.55 0.826 7.90 0.813
RBF 0.5 7.64 0.816 7.34 0.830
RBF 1.0 7.07 0.842 6.84 0.850
RBF 2.0 6.84 0.851 6.64 0.857
RBF 4.0 6.74 0.854 6.56 0.859
RBF 8.0 6.70 0.856 6.52 0.860
RBF 16 6.68 0.856 6.50 0.861
RBF 32 6.80 0.849 6.64 0.854

The standard deviation of the subjects' ages was 12.24, so the RMS errors all
show clear improvements over this figure.
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requires matrix solutions for some very large sparse matrices. The
main contribution of this work is the efficient recursive approach
used to compute the first and second derivatives used by the
optimisation, and the use of a full-multigrid method for solving
the equations. This report has focused on underlying theory, the
algorithm and operational details.

The performance of this constant velocity diffeomorphic
registration scheme has been evaluated in relation to a small-
deformation approach, using classification and regression based
upon anatomical features encoded by the deformations. The flow
fields computed within this constant velocity diffeomorphic
framework appeared to confer only a slight advantage for pattern
recognition approaches, when compared to displacement fields of
a small deformation model.
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Appendix A. Deriving derivatives

Rigorous derivations of first derivatives in a continuous time
representation are given by Beg et al. (2005), but an alternative
derivation is provided here. Derivatives are computedwith respect to
the parameterisation of a flow field (v), fromwhich the mappingΦ(1)

is computed. Within a continuous spatial representation, the
objective function is obtained by

E2 ¼
1
2

Z

xaX
gðxÞ % f ðΦð1ÞðxÞÞ

! "2
dx ð56Þ

The introduction of a second, arbitrary, diffeomorphism (θ),
renders the objective function unchanged—provided that the
Jacobian determinant of θ is accounted for by a Jacobian change
of variables.

E2 ¼
1
2

Z

xaX
jJθ xð Þj gðθðxÞÞ % f ðΦð1ÞðθðxÞÞÞ

! "2
dx ð57Þ

Similarly, it can also be obtained by considering the evolution of
some θ over time

E2 ¼
1
2

Z1

t¼0

Z

xaX

jJð%tÞ
θ xð Þj gðθð%tÞðxÞÞ % f ðΦð1Þðθð%tÞðxÞÞÞ

! "2
dxdt

ð58Þ

Within a discrete time representation, a large deformation can
be considered as a composition of a series of small deformations.
This is analogous to an Euler integration, and becomes
increasingly accurate as N, the number of time steps, approaches
infinity. First and second derivatives of E2 will be derived for a
variable velocity framework, before constraining the model to
constant velocity. In the following, each of the small deforma-
tion displacements will be denoted by un, where n runs from 0
to N−1. The notation Φ(A,B) is used to denote the composition
of (x+uA)○ (x+uA− 1)○…○(x+uB). If the number of compo-
nents is zero, then Φ(A,B) is simply the identity transform.
Similarly, for the evolving second diffeomorphism, θ(B,A) is
used to denote (x−uB)○ (x−uB+1)○…○(x−uA).

E2 ¼
1
2N

XN%1

n¼0

Z

xaX

jJð0;n%1Þ
θ xð Þj gðθð0;n%1ÞðxÞÞ

!

%f ðΦðN%1;0ÞBθð0;n%1ÞBxÞ
"2
dx ð59Þ

For any value of n, Φ(N − 1,0) is equivalent to Φ(N −1,n+1)○ (x+
un)○Φ(n−1,0). Under the assumption of infinitesimally small
steps, (x+un)○ (x−un) will approach the identity transform, so
Φ(n−1,0)○θ(0,n−1) will also approach the identity.

E2 ¼
1
2N

XN%1

n¼0

Z

xaX

jJð0;n%1Þ
θ xð Þj gðθð0;n%1ÞðxÞÞ

!

%f ðΦðN%1;nþ1ÞBðxþ unðxÞÞÞ
"2
dx ð60Þ

The discrete parameterisation of a field, un (x), is normally by a
linear combination of basis functions. Even the so-called free-form
models, which usually obtain continuity via trilinear interpolation,
are essentially parameterised by a set of first degree B-spline basis
functions.

unðxÞ ¼
X

k

vknρkðxÞ ð61Þ

Therefore

B

Bvin
f ΦðN%1;nþ1ÞBðxþ unðxÞÞ
! "

¼
&
jf ðΦðN%1;nþ1Þ

'
Bðxþ unðxÞÞ

& 'T

ρi xð Þ ð62Þ

Fig. 13. A plot of true versus estimated ages derived from diffeomorphic
flow fields and relevance vector regression (RBF 16).
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For a variable velocity framework, the first derivatives of E2 are
therefore

BE2

Bvin
¼ 1

N

Z

xaX

jJð0;n%1Þ
θ xð Þj gðθð0;n%1ÞðxÞÞ % f ðΦðN%1;nÞðxÞÞ

! "

& jf ðΦðN%1;nþ1ÞÞ
! "

Bðxþ unðxÞÞ
! "T

ρi xð Þdx

ð63Þ

Rather than using the exact second derivatives for optimisation,
it is more practical to use an approximation that is guaranteed to be
positive definite. This is the approximation used by the Gauss–
Newton optimisation algorithm, as opposed to the Newton–
Raphson algorithm. Press et al. (1992) says more about the pros
and cons of one version over the other.

B2E2

BvinBvjn
¼ 1

N

Z

xaX

jJð0;n%1Þ
θ xð Þj jf ðΦðN%1;nþ1ÞÞ

! "
Bðxþ unðxÞÞ

! "T
ρiðxÞ

& '

& jf ðΦðN%1;nþ1ÞÞ
! "

Bðxþ unðxÞÞ
! "T

ρjðxÞ
& '

dx

ð64Þ

The derivatives for a constant velocity framework are simply
obtained by summing over the derivatives that would be used
for variable velocity. Note that the notation is changed to the
simpler version that can be used for the constant velocity
model.

BE2

Bvi
¼ 1

N

XN%1

n¼0

Z

xaX

jJð%n=NÞ
θ j gðΦð%n=NÞðxÞÞ % f ðΦððN%nÞ=NÞðxÞÞ

! "

& jf ðΦððN%1%nÞ=NÞÞ
! "

BΦð1=NÞðxÞ
! "T

ρi xð Þdx

ð65Þ

and

BE2

BviBvj
¼ 1
N

XN%1

n¼0

Z

xaX

jJð%n=NÞ
Φ j jf ðΦððN%1%nÞ=NÞÞ

! "
BΦð1=NÞðxÞ

! "T
ρiðxÞ

& '

& jf ðΦððN%1%nÞ=NÞÞ
! "

BΦð1=NÞðxÞ
! "T

ρjðxÞ
& '

dx

ð66Þ

When working with continuous functions, the main text treats
the first derivatives as a continuous vector field (b(x)), and the
second derivatives as a tensor field (A(x)). For the actual
optimisation of the parameters (v), these derivatives are considered
as a vector and a square matrix, respectively. For simplification, the
indexing by x is often omitted.
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