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B-Spline Signal Processing: Part II—Efficient Design
and Applications

Michael Unser, Member, IEEE, Akram Aldroubi, and Murray Eden, Life Fellow, IEEE

Abstract—This paper describes a class of recursive filtering
algorithms for the efficient implementation of B-spline inter-
polation and approximation techniques. In terms of simplicity
of realization and reduction of computational complexity, these
algorithms compare favorably with conventional matrix ap-
proaches. A filtering interpretation (low-pass filter followed by
an exact polynomial spline interpolator) of smoothing spline and
least squares approximation methods is proposed. These tech-
niques are applied to the design of digital filters for cubic spline
signal processing. An efficient implementation of a smoothing
spline edge detector is proposed. It is also shown how to con-
struct a cubic spline image pyramid that minimizes the loss of
information in passage from one resolution level to the next. In
terms of common measures of fidelity (e.g., visual quality,
SNR), this data structure appears to be superior to the widely
used Gaussian/Laplacian pyramid.

I. INTRODUCTION

N a companion paper, we have shown that a variety of

polynomial splines interpolation and approximation
problems can be solved efliciently by shift invariant fil-
tering [1]. Typical applications that could benefit from
these techniques are signal interpolation [2], noise reduc-
tion [3], and data compression [4], [5].

Polynomial splines also provide a simple mechanism
for switching between the discrete and continuous signal
domains. Moreover, the simple piecewise polynomial
form of the interpolating functions facilitates the transfer
and implementation of a variety of mathematical methods
available for the study of continuous functions (e.g., dif-
ferentiation, integration, differential geometry) to the do-
main of the discrete. This design principle was illustrated
in {1] by the derivation of digital filtering algorithms for
signal differentiation and the evaluation of convolution in-
tegrals.

All B-spline processing techniques described in [1] are
based on the well-known property that any polynomial
spline g"(x) can be represented as a weighted sum of
shifted B-spline basis functions (3"(x)) and is therefore
characterized by the discrete sequence of its B-spline coef-
ficients {6], [7]. The primary step for processing a dis-
crete signal g(k) is therefore to determine the B-spline
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coefficients of its continuous representation g"(x). Three
possible options have been considered for this purpose [1].

First, we may determine the B-spline coeflicients that
provide an exact interpolation, i.e., g"(k) = g(k). In ef-
fect, this constraint establishes a one-to-one correspon-
dence between {g(k)} and the sequence of its B-spline
coefficients of order n: { y(k)} [6], [7]. We call such a
transformation a direct B-spline transform, as in {2]. In
the particular case of equally spaced data points, the di-
rect B-spline transform can be implemented by simple lin-
ear filtering:

yky = (b7) " * gk (1.1)

where (b))~ is the impulse response of the direct B-spline
filter of order n.

The second option, which is to be preferred when there
is a reason to believe that the data are corrupted by noise,
is to evaluate the coeflicients of a polynomial spline ap-
proximation subject to some smoothness constraints. This
task is accomplished through the use of smoothing
splines, which were introduced independently by Schoen-
berg [8] and Reinsh [3]. This technique can be viewed as
a regularized version of the previous interpolation prob-
lem [9]. Here too, we have shown that for equally spaced
data points, the B-spline coeflicients of the smoothing
spline of order n = 2r — 1 can be determined by linear
filtering cf. [1, sec. IV-C]:

INCERISH (12)

where s} is the impulse response of the smoothing spline
filter of order n with scale (or regularization) parameter A
= 0. The magnitude of A specifies the amount of smooth-
ing. In particular, the choice A = 0 corresponds to no
smoothing at all, in which case (1.2) is equivalent to (1.1).
The third option is to select a least squares approxi-
mation constrained to an arbitrary (smaller) number of
coefficients. This approach can be thought of as a data
compression technique but it can be used for noise reduc-
tion as well. We have shown [1, sec. IV-D] that the least
squares B-spline coefficients can be evaluated efficiently
by simple filtering and down-sampling by a factor of m:

Ym(k) = st % [bh * gl (k) = [b], * glim(k)

where E”,,, = [sh)im * by is the optimal prefilter for a least
squares spline approximation of order n with a reduction
(or compression) factor m.

(1.3)
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The essence of B-spline processing is then to design
discrete algorithms operating in the B-spline domain so as
to perform mathematical operations or transformations on
the underlying continuous signals g" (x); e.g., evaluation
of derivatives and convolution integrals, the search for
extrema or zero crossings, on the solution of differential
equations. These are all computational tasks that are not
well defined in any conventional discrete signal process-
ing framework known to us. At the very end of the pro-
cess, the result of these computations can be mapped back
into the discrete signal domain by indirect B-spline trans-
form of order p (where p may be different from n); a trans-
formation that involves a convolution with a sampled
B-spline kernel

gk) = bi * y(k). (1.4)

An extended form of this operation for signal reconstruc-
tion with an expansion factor m, of possible use for signal
interpolation, is provided by [1, eq. (3.17)]. Separable
extensions of these algorithms are not difficult to obtain
for higher dimensional signals through the use of tensor
product splines.

The purpose of this paper is to investigate the imple-
mentation of these techniques and to present some ex-
amples of applications. Section II describes a class of re-
cursive algorithms for the efficient implementation of the
B-spline transformations described by (1.1)~(1.3). It also
compares this approach with a “‘carefully designed’’ ma-
trix algorithm based on Gaussian elimination. In Section
III, the global effect of both smoothing spline and least
squares approximations is described in terms of equiva-
lent low-pass filters acting on the input data sequence.
Finally, in Section IV, we derive explicit filter formulas
for cubic spline signal processing and present some image
processing applications. In particular, we describe an ef-
ficient implementation of a cubic spline edge detection
algorithm, which, somewhat unexpectedly, turns out to
be equivalent to the Canny edge detector [10]. We also
introduce a cubic spline image pyramid and show that this
representation compares favorably with Burt’s Gaussian/
Laplacian pyramid [11], [12], a technique used in a va-
riety of multiresolution image processing and computer
vision algorithms [13].

The theoretical results in [1] were derived under the
assumption of finite energy signals with an infinite dura-
tion (i.e., g(k) € ;). Since the signals (or images) en-
countered in practice are of finite duration: {g(k), k = 1,
-+ -, K}, we have to impose a set of boundary condi-
tions. For practical convenience and to avoid discontin-
uities, we have chosen to extend a signal on both sides by
using its mirror image, a standard practice in image pro-
cessing:

g(-k) =gk +1, k=0 ---,K-1
gk) =gRK -k, k=K, - ,2k—-1

Such a signal is also embedded in an infinite sequence of
period 2K — 1 defined as

vk e Z, g, (k) = g(k mod 2K — 1)).

(1.5)
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This last property may be useful for implementing FFT-
based algorithms, although this option is not considered
further in this paper.

1. B-SpLINE FILTER IMPLEMENTATION

In this section, we present a general procedure for im-
plementing the B-spline filters derived in [1]. The present
approach uses the fact that the basic structure of all these
filters is very similar (symmetric all-pole IIR filters). Al-
ternatively, these filters may also be implemented using
an FIR approximation of their impulse response. A con-
strained least squares design technique that is well suited
for this latter task is discussed in [14].

A generic symmetrical recursive filter may be decom-
posed into a cascade of elementary symmetrical exponen-
tial filters which themselves can be separated into two
complementary causal and anticausal components. Such
a decomposition can then be used to obtain simple imple-
mentation formulas for direct and least squares B-spline
filters of any order. The first-order smoothing spline filter
also fits well into this framework. Following a presenta-
tion of our main results, we compare the computational
complexity of the present approach and a fast matrix im-
plementation, with a special emphasis on the problem of
cubic spline interpolation.

A. Basic Decomposition Formulas

Let us consider the z transform of a generic symmetri-
cal stable recursive filter of order 2N:

Co
N-1

[zN + z'N] + <k§l ak[zk + z"k]> + ay

Hyn(z) =

2.1

where ¢y and {a;, k =0, - - - , N — 1} are constant coef-
ficients. A polynomial P,y (z) can be defined by multiply-
ing the denominator of (2.1) by z". Clearly, since Hyy(2)
= H,y(z™'), this polynomial satisfies the equation:
VNP (2) = 2Py (z7Y). Tt follows that the zeros of
P,n(z) occur in reciprocal pairs, i.e., Pyy(z;) = 0 iff
P,y (z7') = 0. These roots, which are assumed to lie out-
side the unit circle, are denoted by {(z;, z;") with |z;]| <
1,i =1, - -+, N}. Consequently, H,y(z) can be factored
as

N

Hyn(@) = ¢ El H(z 2) 2.2)

where H(z; z;) is defined as follows:

oy e— —Z
HG 2= <(1 -2z (1 - ziz)>

S < R —1>(23)
Q-z2)\1-zz" 1-2zz R
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The global impulse response can then be determined ex-
plicitly by using a standard decomposition into simple
partial fractions.

B. Implementation of the Basic Symmetrical Operator

Equation (2.2) suggests a straightforward filter imple-
mentation by a cascade of simple operators, which we now
consider in greater detail. Obviously, this approach is only
practical when the z;’s are all real. The smoothing cubic
spline filter which does not satisfy this constraint is dis-
cussed separately in Section 1V-B.

It is not difficult to show that H(z; z;) is the transfer
function of a symmetrical exponential filter whose im-
pulse response is

Z
hik; z;) = (—1—‘_72) zll.kl.

Starting from (2.3), we can derive the following recursive
filter equations: '

yik)y = xk) + iy (k —~ 1),
(k — 2’ e K)

y(K) = ¢;2y" (K) ~ x(K))

yk) = i (yk + 1) = y" (k)),
k=K-1,---,1

2.4)

2.5)

where x (k) and y (k) are the input and output signals, re-
spectively, and where ¢; = —z; /(1 — z?) is a scaling con-
stant. For boundary conditions specified by (1.5), the re-
cursion begins with

ko
y =zt 2.6)

where k; is chosen to ensure that z!.k"' is smaller than some
prescribed level of precision. The second equation in (2.5)
is borrowed from a sum decomposition (right-hand side
of (2.3)) and is required to obtain a correct initialization
of the backward recursion. The following arguments can
be listed in favor of these particular boundary conditions:

¢ the boundary conditions are also satisfied by any fil-
tered version of the signal provided that the impulse
response of the filter is symmetrical; this property is
essential for reversibility of the B-spline transform;

¢ they result in no visible border artifacts;

¢ they guarantee that the filtering of a constant signal
induces a constant output.

The algorithm described by (2.5) requires no more than
two additions and two multiplications per sample point.
Since all operations are real, it is necessary to use a one-
dimensional real array to store the input and output se-
quences with a precision sufficient to avoid propagation
of errors by recursion. It is relatively straightforward to
write a general subroutine that implements (2.1) from a
succession of simple convolutions of the form (2.5). This
approach is also applicable in higher dimensions through

the successive use of the same one-dimensional filter along
each dimension of the data. For digital images, there is in
principle no need for floating point data storage other than
the one-dimensional array required by the basic filtering
module.

We note that for compatibility and to insure the revers-
ibility of the transformations involved, the FIR operators
used for signal reconstruction (indirect B-spline trans-
form) should also use the same type of signal extrapola-
tion (i.e., (1.5)).

C. Recursive Direct B-Spline Filters

We used the iterative equations [1, egs. (3.3) and (3.4)]
to determine the transfer functions of the direct B-spline
filters for n = 0 to 7. These expressions together with
their characteristic values cpand {z;, i = 1, - - - , [n/2]}
are given in Table I. The use of these parameters in the
general filtering module described above allows an eval-
uation of the B-spline coefficients of order n with approx-
imately 2[n /2] multiplications and 2[n /2] additions per
sample point.

It is interesting to note that the roots of direct B-spline
filters are simple and negative, as illustrated by the ex-
amples in Table I. This property was proved by Schoen-
berg [7, Lemma 8] in a different context. .

D. First-Order Smoothing Spline Filter

The first-order smoothing spline filter is the simplest
case of [1, eq. (4.13)] and its transfer function can be
written as

1
L+ N=z"+2~-2

2 / A

(1 - zz7H1 - z;2) (@ 2/
where A is a regularization parameter controlling the de-
gree of smoothness of the first-order spline (piecewise lin-
ear) signal approximation. The smallest root z; (0 < z,
< 1) of the characteristic polynomial is given by

1 V1 4+ 4r

Sy () =

2.7

= + — — .
a=l+n 28 @8)
Clearly, this filter corresponds to a particular case of (2.2)
with ¢g = —1/ A and N = 1. Interestingly, it is identical

to the first-order R-filter described by us in a different con-
text [15]. A further discussion of the properties of this
particular filter can be found in Section III-A of that ear-
lier paper.

The case of higher order smoothing spline filters is
somewhat more complicated because the roots are not
necessarily simple and depend on A. The special case of
smoothing cubic splines, which is still tractable analyti-
cally, is considered in Section IV-C.

E. Least Squares Spline Filters

We have shown in [1] that least squares B-spline ap-
proximations with a decimation factor m can be deter-
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TABLE 1
TRANSEER FUNCTIONS AND POLES OF DIRECT B-SPLINE FILTERS FOR n = 0 10 7
n Direct B-Spline Filter: B/ (z) "' o Poles: {lz] < 1,i=1,+"", n}
0 1 1 —
1 1 1 —
8
2 — 8 L= -3+ 242
Z+6+2 = —0.171573
3 6 — 6 L= =2+ NE)
z+4+z = ~0.267949
4
4 2 38 r 3 384 2, = —0.361341
28+ 76z +230 + 767" + 77 o = —0.0137254
120
5 2 = = 120 2, = —0.430575
T 2624664260+ 2 2 = —0.0430963
46080
6 3 3 - - 46080 z, = —0.488295
2%+ 72277 + 105437 + 23548 + 1054377 + 722777 + z7° o = —0.0816793
v = —0.00141415
5040
7 3 2 - — = 5040 7, = —0.53528
0+ 120z + 1191z + 2416 + 1191z7" + 120z7° + 27 = 0122555
2y = —0.00914869

mined in three basic steps (cf. Fig. 3(a)). The practical
aspects of this procedure are now considered in greater
detail.

1) Prefiltering: The first step is a convolution with a
discrete sampled B-spline basis function expanded by a
factor m (e.g., b). This operation is equivalent to an in-
direct B-spline transform whose efficient implementation
by the use of moving average filters of length m is dis-
cussed in [2]. For small expansion factors (m = 2 or 3),
one may equally well implement this operation as a single
convolution with a symmetrical FIR kernel b}, of length
(2m[n/2] + m) which can be generated recursively by
use of [1, egs. (3.3) and (3.4)].

2) Decimation: The next step is a decimation by a fac-
tor of m that samples the signal at the position of the knots
of the expanded B-spline basis functions. To insure the
concordance between the approximation and reconstruc-
tion processes in the border regions, the knot points should
be positioned so that the boundary conditions used for the
initial and decimated sequences are fully compatible. For
the mirror symmetry extrapolation of the signal specified
by (1.5), this puts the constraint of having a knot at each
extremity of the signal which is only possible for se-
quences of length K = K'm + 1 where K’ is an integer
number. The input signal should therefore initially be
truncated or extrapolated in some manner to this length
and the samples taken according to the sequence: k = 1,
m+L,2m+ 1, -, mk’ +1, ---,mK' + 1. Al-
ternatively, it is also possible to modify the initial con-
ditions on the decimated sequence so that they are com-
patible with (1.5) at the finer resolution level.

3) Recursive Filtering: The final step is to postfilter
the decimated sequence with the least squares operator
Sm(2) (cf. [1, eq. (4.20)]); also a particular case of (2.1).

To determine this filter’s coefficients, we need to evaluate
the autocorrelation function of the sequence &, and down-
sample it by a factor m. We have performed these calcu-
lations for m = 2, - - - , 8 and all B-spline functions up
to order 3. Some of those results (m = 2 and 3), including
all parameters for the general filtering module described
in Section II-B, are given in Table II. In all cases, the
number of characteristic roots, which equals the number
of elementary exponential convolutions, is precisely equal
to the order of the B-spline (n). An interesting property is
suggested by the derivation in Appendix A: For m suffi-
ciently large, the least squares spline filters s, converge
to a direct B-spline filter of order 2n + 1:

lim (m - s"k) = (b27') " ).

m— +o0

(2.9

In fact, a comparison of the roots of the corresponding
filters in Tables I and II shows that this tendency is al-
ready quite apparent for m = 3, especially for higher or-
der splines.

These algorithms were implemented in Fortran on a low
end workstation (standard 16 MHz Apple Macintosh IIcx)
for biomedical image processing. An example is shown
in Fig. 1 comparing the result of LS zero order and cubic
approximations with a compression ratio 4 (m = 2) to the
original image. The zero order approximation is obtained
by taking averages over 2 X 2 neighborhoods (simple
moving average). The B-spline coefficient image (Fig.
1(b)) is essentially a scaled down version of the original
MRI scan (Fig. 1(a)). The reconstruction (Fig. 1(d)) has
noticeable artifacts and has a signal-to-noise ratio (SNP.)
of 27.78 dB. The LS cubic spline coefficients provide a
reduced image (Fig. 1(c)) that appears to be perceptually
sharper than the original. The reconstruction (Fig. 1(e))
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Fig. 1. Example of least squares spline image compression with a decimation factor 2. (a) Original 238 X 253 MRI scan, (b)
least squares zero-order coefficients, (¢) least squares cubic spline coefficients, (d) zero-order reconstruction, (e) cubic spline
reconstruction.

TABLE 11
TRANSFER FUNCTIONS AND POLES OF LEAST SQUARES B-SPLINE FiLTERS FOR n = 0 TO 3 AND DECIMATION FACTORS m = 2 AND 3

Order Width

n m Least Squares B-Spline Filter: S}, (2) I Poles: {|z;] < 1,i=1, - ,[n/2]}
0 2 1 1 —
4
1 2 — 4 7, = —0.171573
z+6+z
2 2 64 64 0.446463
L2 -1 -2 = —L
25+ 282+ 70 + 2827 + z 2 = —0.0395661
3 2 2304 2304 0.529604
3 B - =3 = L= 7Y
z° + 110z° + 1087z + 2212 + 1087z + 110z + z = —0.122309
2, = —0.0100731
0 3 1 1 —
1 3 % 2 = —0.220789
’ 4z + 19 + 47" 4 o=
5 3 5184 5184 0.427871
3 =T 3 g = L.
131z° + 3364z + 8562 + 336z + 131z 131 2 = —0.0437242
3 3 26244 26244 0.534462
3 3 B 2 =3 o =L
16z° + 1875z + 18600z + 37750 + 18600z ' + 187577 % + 162 16 = —0.122347
z; = — 0.00939172

is of much better quality with SNR = 35.39 dB. The CPU A more detailed performance evaluation using a wider
times necessary for the evaluation of the results in Fig. 1  range of compression ratios is given in Table III in terms
using a separable recursive implementation were 4 s (b), of the SNR in decibels for various B-spline approxima-
25s(c), 1 s(d), and 12 s (e). tions of order 0, 1, 2, and 3. Consistent with our expec-
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TABLE 111
COMPARISON OF VARIOUS COMPRESSION METHODS IN TERMS OF THEIR SIGNAL-TO-NOISE RATIO (DECIBELS)
FOR THE ‘‘MRI"’ IMAGE IN FIG. 1(a). A DECIMATION BY (m, m) CORRESPONDS TO A COMPRESSION RATIO OF

R=1/m
0 Order Bilinear Quadratic Cubic Quadratic Gaussian Spline
Decimation Spline Spline Spline Spline Interpol. Pyramid Pyramid
2,2) 27.78 32.66 35.06 35.39 33.76 26.55 35.39
3,3 24.38 27.85 28.84 29.08 27.41 — —
4,4 22.43 24.96 25.46 25.58 23.70 20.95 25.57
(5,5 21.20 23.22 23.61 23.73 21.50 - —
(6, 6) 20.18 22.30 22.61 22.68 20.45 — -
7,7 19.68 21.22 21.52 21.62 19.33 — —
8, 8) 19.06 20.54 20.78 20.85 18.95 18.02 20.83
tations, the quality of the approximation diminishes with where u; = u, = ... = ugx = %, Vy =03 = ... = Ug_

increasing reduction factors (m). What is more interesting
is that for a given compression ratio the SNR’s obtained
for higher order splines are consistently superior. It ap-
pears, however, that the relative performance improve-
ment decreases rapidly with n. The results of the quad-
ratic spline compression method described by Toraichi et
al. are also given in Table III [4]. It is not surprising that
this technique, which uses a simple decimation (with no
prefiltering) followed by an exact quadratic spline inter-
polation, produces lower SNR values. For comparison,
we have also included the results obtained using Burt’s
Gaussian pyramid [11], [12]; a hierarchical image repre-
sentation frequently used in multiresolution image pro-
cessing and computer vision applications [13]. The some-
what inferior performance of the latter technique can be
explained by reference to the expansion (or interpolation)
mechanism described in [12]. It is suboptimal in that it
does not minimize the approximation error, but it simpli-
fies the implementation. An alternative cubic spline im-
age pyramid that avoids this limitation is described in
Section IV-C. Its results (cf. last column in Table III) are
essentially equivalent to the ones obtained for the cubic
spline least squares approximation.

F. Comparison with Conventional Matrix Approaches

Usually, polynomial spline interpolation and approxi-
mation problems are solved using matrix formulations
[16]. The main advantage of the B-spline representation
is the simple structure of the underlying matrices which
are banded Toeplitz. It follows that the corresponding
system of equations can be solved very efficiently by care-
ful Gaussian elimination or LU factorization [17]. To il-
lustrate these techniques, we consider the case of cubic
spline interpolation. The matrix formulation of this prob-
lem with boundary conditions specified by (1.5) is

— —

u v, 0

vy Uy Uy

CUg_y Vg

Ug

=t andv = vg = 2 This system of tridiagonal equa-
tions can be solved by using an adapted version of a fast
algorithm described in [18, pp. 40-41]. The first step is
an LU decomposition with a forward substitution:

dy = uy,

o = vi/d;_

d = u + av;_y, i=2:,K).
Y@ =g+ agli— 1

The second step is a backsubstitution using the upper tri-
angular factorization specified by the components of the
vectors d and v:

y(K) = y" (K)/dg
o = —v;/d;
y(i) = =y @) /u + a;yG + 1),
(=K-=1,---,1

This algorithm has a complexity of 8K flops (5K multi-
plications + 3K adds) where K is the number of samples,
which is about twice that of the filtering procedure de-
scribed in Section II-C. Moreover, it requires additional
intermediate storage for the modified diagonal elements
of the upper triangular factorization. We note that this
procedure is quite similar to the recursive filtering algo-
rithm (2.5) described in Section II-B: the forward and
backward substitutions correspond to the causal and anti-
causal recursive filtering equations, respectively. The only
difference is the use of a nonconstant updating factor q;
in (2.11) and (2.12). During the forward substitution part
of the algorithm, it is easy to verify that this quantity is

2.11)

(2.12)

y ] g ]
y(2) g(2)
= (2.10)
y(K -1 gk —1)
Loy 4L oo
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given by
-1

o = ————
! 4+(X,'_|

with the initial condition oy = —%. This nonlinear differ-
ence equation has a stable steady state o = —2 + /3 that
corresponds precisely to the value of the recursive filter
coeflicient for the direct cubic spline filter [2]. In fact, it
can be verified that the convergence of «; to this value is
extremely fast (relative error less than 0.04% error for i
= 3). The same type of analysis can be carried out for the
backsubstitution part of the algorithm. These considera-
tions clearly show that the filtering and matrix procedures
are essentially equivalent and differ only in their way of
handling the boundary conditions. The former is simpler
and uses fewer operations.

For higher order spline interpolations and least squares
approximations, it would appear that the advantage of the
filtering procedure over the matrix approach is even
greater, not to mention the difficulties that might be en-
countered in designing such matrix algorithms. For a
B-spline interpolation of order n, the recursive filtering
approach described in Section II-C uses 4[n /2] flops per
sample. A comparable algorithm for banded matrices
would require 2n[n/ 2)? flops/sample for the LU factor-
ization alone, and 8[n /2] flops/sample for the subsequent
solution of the banded system of equations using forward
and backward substitutions [17, pp. 150-151]. In this re-
spect, we note that the matrix algorithm described above
is superior in the sense that it performs the two tasks
jointly and computes the LU factorization at no additional
cost.

III. B-SPLINE APPROXIMATION AND Low-PAss
FILTERING

In the first part of this study, we have offered an inter-
pretation of B-spline interpolation as the convolution of a
sampled sequence with a continuous interpolation func-
tion referred to as the cardinal spline. This interpolation
function resembles a sinc function and its frequency re-
sponse approximates an ideal low-pass filter (cf. [1, sec.
I11I-DJ).

A similar filtering interpretation can be made for signal
approximation using either smoothing or least squares
splines. The key idea is to decompose these operations
into a purely discrete filtering procedure implementing the
approximation part of the process, and a subsequent poly-
nomial spline interpolation that produces an exact inter-
polation of the intermediate discrete values. It will be
shown here that the first part of this process is a special
form of low-pass filtering.

A. Smoothing Spline Approximation

In the case of smoothing spline approximation, the dis-
crete part of the process is completed when the B-spline
coefficients are mapped back into the signal domain. This
requires an additional indirect B-spline transform. Thus,

based on [1, eq. (4.13)], the transfer function of the
equivalent discrete filter is

A2 = Bi(@)83 ()

= Bi(@2)
= Brll(Z) + )\(—z + 2 - Z-l)(n+1)/2 (31)

where B} (z) is given by [1, eq. (3.9)]. The frequency re-
sponse is obtained by replacing z by e/*7. Clearly, we
have that H}(z)|,-=, = 1 as B{(2)|,—=; = land (-2 + 2
+ 1/2)|,-, = 0; it follows that the gain at zero frequency
is precisely one. In fact, H} (z) always behaves as a low-
pass filter and the strength of this filtering is modulated
by the parameter N. As an example, we show the graph
of the frequency response of a cubic B-spline filter for
various values of A\ (Fig. 2).

B. Least Square Spline Approximation

The case of the least square B-spline approximation is
slightly more complicated because we require a decima-
tion by a factor m during signal approximation followed
by an expansion by the same factor for signal reconstruc-
tion. The mechanism by which a filtering/interpolation
decomposition can be obtained is illustrated in Fig. 3. The
first step is to apply an indirect B-spline transformation to
the B-spline coefficients to map these back into the deci-
mated discrete signal domain. This operation must be
compensated globally by an inverse direct B-spline filter
(cf. Fig. 3(b)). The last manipulation is to move both dis-
crete filters on the other side of the decimation and ex-
pansion modules. This, in turn, requires an up-sampling
of their impulse response by a factor of m (cf. Fig. 3(c)).

The components prior to decimation form the proce-
dure’s discrete filtering part characterized by the transfer
function

Bl (2)B{ ("
m—1
el Z B:tn(zeZWk/m)Z
m k=0

H(@) = BL@BI(") =

(3.2)

The components on the left produce an interpolation with
an expansion factor m (see for instance [2]). Such a dis-
crete B-spline interpolator is characterized by the transfer
function

B,(2)
Biz™)’
The notation H " (z) in (3.2) is consistent with the fact that
H " () is defined as a pseudoinverse of H,,(z). The graphs
of the frequency responses of corresponding filters for n
=1, 3, 5 and a decimation factor m = 2 are shown in
Fig. 4. It is apparent from those displays that the prefilter
};;’,, acts like a low-pass filter with a cutoff frequency at
1/m. This operator is therefore quite similar to the anti-
aliasing low-pass filters used in conventional sampling
theory [19]. We also note that the prefilter approaches an
ideal low-pass filter for increasing values of n. This result
is consistent with the property that a cardinal spline inter-

H, (@) = (3.3)
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Fig. 2. Frequency response of a smoothing cubic spline filter for various
values of A.

0.1 0.2 0.3 0.4 0.5

e L C @ """ @b;*[(b:)_l]rm

©

Fig. 3. Three equivalent implementations for the least squares polynomial
spline approximation of a signal.

o o O O

)

Fig. 4. Frequency responses of the optimal prefilter (H3( f)) and its cor-

responding B-spline interpolator (H3( f)) with an expansion factor of two

forn = 1,3,and 5. Legend: n = 1: - - — - (linear), n = 3: - - - - (cubic),
=5 (quintic).

polator approaches an ideal sinc interpolator as n tends to
infinity [20].

The least squares spline approximation of a signal g (k)
may also be viewed as the projection of this signal into
S»: the subspace of polynomial splines of order n with a
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knot spacing m. This property also implies that the error
e (k) = gk) — gn(k) is orthogonal to g (k), the ex-
panded representation of this approximation.

IV. CuBic SPLINE IMAGE PROCESSING

In this section, we will concentrate on the design and
the study of the properties of the operators for cubic spline
signal processing because higher order splines will rarely
be required in practice. We will also present some image
processing applications of these techniques.

We recall that the cubic B-spline coefficients that pro-
vide an exact signal interpolation are obtained by convo-
lution with the direct cubic spline filter (direct cubic spline
transform) given by

6

Wy S RI-! —
(b1) (b Bi(2) ta+z

“4.1)
The operation is fully reversible (indirect cubic spline
transform) by convolution with a sampled cubic spline
kemnel:

bl o Bl@ =L@ +4+77). 4.2)

For image processing applications, these filters are ap-
plied successively along the rows and columns (see, for
example, [2]). In the case of noisy data, an approximate
cubic spline representation can be obtained through the
use of the smoothing cubic spline filters described in Sec-
tion IV-B.

A. Gradient and Laplacian Operators

Once an exact or approximate B-spline image represen-
tation has been obtained, the evaluation of first-order and
second-order derivatives along the vertical or horizontal
direction involve simple convolutions with the basic one-
dimensional difference operators |1 —1| and |1 =2 1|,
respectively, (cf. [1, Sec. IV-A]). If we are using a cubic
spline representation, the first-order derivative will be a
quadratic spline while the second-order derivative will be
a piecewise linear function.

To map those results back into the image domain, we
must perform an indirect B-spline transform. In the case
of a single derivative, this requires an additional convo-
lution with c%(k) (cf. [1, Table I]). It is worth noting that
by combining the difference and indirect transformation,
we get the equivalent antisymmetrical operator: |% %| *
[1 =1 = |3 0 —3|, which is frequently used as the dis-
crete approximation of a differentiator. In the case of the
second-order derivative, the indirect mapping is the iden-
tity transform since the first order B-spline coeflicients
correspond to the pixel values themselves.

To evaluate image gradients or Laplacians which are
frequently used for edge detection, we apply these oper-
ators in the two principal directions. This is illustrated by
the general block diagram in Fig. 5. The convolution mask
for the vertical and horizontal gradient components are
derived from the tensor product of the symmetric differ-
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Fig. 5. Two-dimensional cubic spline gradient and Laplacian operators.

ence kernel and the sampled cubic B-spline (4.2) that per-
forms the indirect cubic spline transformation. The oper-
ators used in the last part of this system are very similar
to those used conventionally in image processing for edge
detection: The Laplacian mask is identical to the most fre-
quently used discrete Laplacian operator and the vertical
and horizontal gradient masks are similar to the Sobel op-
erators [21], [22]. The essential difference, however, is
the use of a prefilter to determine the cubic B-spline coef-
ficients. As mentioned previously, one may choose be-
tween an exact representation (direct B-spline transform)
which is to be preferred for noise free data, or an approx-
imate representation (smoothing splines) which is more
robust for noisy images. The use of a least squares ap-
proximation techniques for a multiresolution feature ex-
traction is also conceivable, in a way that is analogous to
the scale-space approach described by Witkin [23].

B. Smoothing Cubic Spline Filters

The smoothing cubic spline filter is obtained by setting
r = 2 in (4.13) in [1] yielding

53 (2)
_ 6
Tz+4d+ 7+ 6N -4+ 6 -4z + 7))
(4.3)

This transfer function can be factorized into a product of
complementary causal and anticausal responses

53@ = ST (ST (1/2)
with |

1 — 2p cos (w) + p?

oy —
S = 1 — 2p cos (w)z™' + p%z”

3. 4.4)

The quantities p and w are the magnitude and argument
of the two smallest complex conjugate roots (z, = pe’®
and z, = pe /) of the characteristic polynomial in the
denominator of (4.3). The explicit determination of these
roots is rather complicated but can be carried out analyt-
ically by making a change of variable ¥ = (z + z~') and
then solving a system of nested quadratic equations. After
a series of lengthy calculations, we find that

24N — 1 — VE\ /48N + 24NN/3 + 144N \'/?
e O

4.5)

144N — 1\'/?
—> (4.6)

tan (w) = < E

where
£ =1— 96\ + 24N<3 + 144\,

We have checked the validity of these formulas numeri-
cally for particular values of A. The regularization param-
eter A is directly related to p and w by
A= L
(1 — 2p cos (@) + pO)*’

4.7)

It can also be shown that the impulse response of this filter
is
s (K) = cop™ [(cos (w]k|) + v sin (w|k])]

where

4.8)

Y1+ 57 tan (0

and where the normalizing term ¢y is given by

140" 1 —=2pcos(w +p’
T 1-p% 1+ 2pcos(w) + o>

Co
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Fig. 6. Block diagram of cubic spline edge detector.

We have observed empirically that this filter resembles a
normalized (zero mean and unit sum) Gaussian filter with
variance

2 o
g, =

V2A.
By taking advantage of the product decomposition (4.3)
and using the same technique as in Section II, the cubic
spline filter can be implemented recursively with as few
as four operations per sample value. A two-dimensional
version of this algorithm is outlined in the upper part of
Fig. 6 with the following values for the filter coefficients:
b, = pcos (w)and b, = — . It should be mentioned that
this smoothing cubic spline filter is very similar to the
second order R-filter W, (z) derived by us in a different
context using regularization theory [15]. The main differ-
ence is the presence of B3 (2) in the denominator of (4.3)
which leads to somewhat different expressions for the pa-
rameters p and w.

The concept of a smoothing spline edge detector was
initially proposed by Poggio et al. to deal with the ill-
posed nature of differentiation in the presence of noise
[24], [25]. These authors showed that the corresponding
regularization filter is very similar to a Gaussian. A cubic
spline edge detector using a similar concept and the com-
putational techniques developed in this section is repre-
sented schematically in Fig. 6. The underlying principle,
which is common to many recent edge detection schemes
[26], [27], is to search for the maxima of the first-order
derivative in the direction of the gradient or, equivalently,
to detect the zero crossings of the second directional de-
rivative. In our system, this task is accomplished in four
steps. First, the image is filtered with a smoothing spline
filter which provides a representation in terms of cubic
B-spline coefficients. The parameter A is adjusted by tak-
ing into account the noise thought to be present in the
image and the minimum size of the objects or details that
are of interest to the observer. Second, the sampled values
of the image gradient are evaluated by convolution with
the appropriate horizontal and vertical templates (cf. Fig.

4.9)

5). Third, these values are converted into polar coordi-
nates. Finally, all points that are not local maxima along
a line pointing in the direction of the gradient are set to
zero (nonmaxima suppression).

Interestingly enough, it can be shown (cf. Appendix B)
that the block diagram in Fig. 6 is very similar to the
Canny/Deriche edge detector (CDED) [10], [15], [28].
This latter operator is known to be optimal with respect
to a particular criterion that takes into account both the
efficiency of detection in the presence of noise and the
reliability in localization [10]. The design of the edge de-
tector that we are proposing here uses fewer operations
than the fast Deriche implementation of CDED which is
also recursive. We note, however, that these algorithms
are not rigorously equivalent and that the design consid-
erations are different. From a practical point of view,
however, these differences have a relatively minor effect
and the output of these edge detectors are essentially
equivalent.

An example of edge detection for a high resolution
electron micrograph of herpes simplex type II [29] is
shown in Fig. 7. Typically, such micrographs (Fig. 7(a))
are quite noisy due to the use of low electron dose tech-
niques intended to preserve the integrity of the specimen
insofar as possible. As one might expect, the cubic spline
edge detection algorithm (Fig. 7(d)) is superior to a sim-
ple Roberts edge detector (Fig. 7(b)) [30].

C. The Cubic Spline Pyramid

Another interesting application is the generation of a
multiresolution pyramid in a way that is very similar to
the techniques described in [11]-[13], [31]. A pyramid
representation of a signal g is a sequence of fine-to-coarse
approximations: gq,, gy, * * ° » &) With the number of
samples reduced by a factor of two in each of the principal
directions from one level to the next. In the present case,
we generate such a hierarchical data structure by comput-
ing a sequence of nested cubic spline least squares ap-
proximations with a decimation factor of two. The cubic
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Fig. 7. Example of edge detection. (a) 226 X 184 region of interest of a digitized electron micrograph of herpes simplex virus

type 2 (negatively stained), (b) output of a standard Sobel operator, (c) result of cubic spline smoothing with A =

(d) gradient magnitude after nonmaxima deflection algorithm.

spline filters relevant to this context (cf. [1, sec. IV-D]) are

b3(k) & Bi@) =

8 (o, = 2),

32 + 23[z + z"'] + 8[z2 + 1‘2] + [z3 + 273

4.
48 (*.10)

48?

3k © S3(2)

2212 + 1087[z + 271 + 102> + 2 ] + [2° + 2 ]

To insure that the different levels of the pyramid provide
a lower resolution copy of the image that is visually as
close as possible to the original one, we use a signal rep-
resentation in terms of sampled values (cf. Section I1I-B),
as opposed to a B-spline representation that tends to over-
emphasize higher frequencies (cf. Fig. 1(c)) (these two
representations are equivalent and are related to each other
through the B-spline transform).

We have shown in Section III-B that the standard de-
cimation technique, which uses a prefilter followed by a
down-sampler (see, for instance, [32]), could also be used
for computing least squares B-spline approximations. The
optimal prefilter that is required for this purpose is rep-
resented on the left side of Fig. 3(c) and is characterized
by (3.2). Based on these results, the successive levels of

@.11)

the cubic spline pyramid are computed iteratively as

8oy (k) = g(k)
i+ k) = [A3 * goln k), 4.12)
i=1--- ,N-1
where the prefilter is given by
A3(k) = [s3 * bl * b3(K). (4.13)

The second equation in (4.12) defines the basic REDUCE
operation. It can be verified that the transfer function of
the optimal prefilter is

B4 + 22+ 2 DB2+ Bz + 2N +82+ 7+ [0 + 2 ])

Hiz) =

2212 + 1087[z° + 271 + 110[* + 271 + [2° + 2 9

(4.14)
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Fig. 8. Comparison of image pyramids. (0): Initial test image (level 0), (al-b4): levels 1 to 4 of Burt’s Gaussian pyramid with
a = 3/8, (bl-b4): levels 1 to 4 of the least squares cubic spline pyramid.

Fig. 9. Comparison of Laplacian pyramids for the image in Fig. 9-(0). (A1-4): four bottom levels the basic Laplacian pyramid
with @ = 3 /8, (B1-4): four bottom levels of the cubic spline difference pyramid.

Based on inspection of its frequency response (Fig. 4(a)),
it appears that this operator is essentially a low-pass filter
with a slight emphasis of the higher frequencies in the
bandpass region. The cubic spline pyramid of a standard
test image is shown in Fig. 8. For comparison, we have
also included a representation of Burt’s Gaussian pyramid
with @ = 3. We note that the sharpness of the least squares

cubic spline pyramid (8b) is preserved at all resolution
levels while the corresponding images in the Gaussian
pyramid (8a) seem increasingly blurred in comparison.
Cubic splines also provide us with a complementary in-
terpolation mechanism from any coarser level of the pyr-
amid onto a finer sampling grid. This process is accom-
plished efficiently by defining an EXPAND function that
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performs a cubic spline interpolation with an expansion
factor 2. The operation is described as

Si-1 &) = h3 * [guln k)

where 43 is the impulse response of a cubic spline inter-
polator with a zooming factor 2 and is given by

h3k) = [(b}) 112 * b3 (k).

The transfer function of this filter is obtained by substi-
tuting (4.2) and (4.10) in (3.3):

H3(2)

R+ B+ N+ 8+ + 0+ 27
8(z° + 4 + 279 '

4.15)

(4.16)

4.17)

We note that g, _, (k) is precisely the least squares cubic
spline approximation of g, _ (k).

Burt and Crowley have introduced the concept of a La-
placian pyramid that displays the information lost during
decimation in a Gaussian pyramid [12], [33]. In the pres-
ent context, an analogous representation can be obtained
by taking the difference between the signal at a given res-
olution level and its least squares cubic spline approxi-
mation reconstructed from the samples at the next coarser
level:

Agi-n(k) = gi-nk) — gi-1y(k).

Fig. 9 provides a comparison between Burt’s Laplacian
pyramid (LP) and the cubic spline difference pyramid
evaluated according to (4.18). Identical intensity scaling
factors were applied to all images to facilitate the com-
parison. For the initial LP, the amount of information lost
at each level is quite significant; the initial subject is still
readily recognizable. In the case of the cubic spline pyr-
amid, the energy of the difference is reduced drastically
but very high frequency artifacts are propagated in this
representation, albeit with very little energy.

Based on those results, it appears that the present tech-
nique could be used to improve the performance of the
coding scheme described in [12]. As multiresolution tech-
niques are increasingly common in image processing,
there may be many other potential applications including
image segmentation [11], [34], edge detection [35], fea-
ture extraction, and a variety of multigrid algorithms for
computer vision [36] that may be developed from the con-
cepts we have presented.

4.18)

V. CONCLUSION

The main objective of this series of papers has been to
derive digital filtering techniques for solving the classical
problems of B-spline interpolation and approximation. Ef-
ficient recursive algorithms have been exhibited that pro-
vide practical alternatives to the more standard matrix ap-
proaches commonly used in this context. The filtering
approach is also interesting conceptually for the new

interpretations it suggests. For instance, we have seen that
a polynomial spline interpolator acts like a low-pass filter
and that its impulse response is very similar to a ‘‘sinc’’
function. In fact, our recent theoretical results suggest that
this analogy is more profound and that the classical inter-
polation method for bandlimited signals correspond to a
polynomial spline interpolation with n = + oo [20]. Like-
wise, the method of least squares B-spline approximation
can be viewed as an extension of conventional sampling
theory for bandlimited signals [37], [38].

Dealing with continuous signal (or image) representa-
tions may also suggest new processing algorithms, or, at
least, provide a sounder theoretical underpinning for some
earlier approaches. For instance, we have shown that it is
relatively easy to compute quantities such as derivatives,
gradients, or Laplacians by simple convolution with finite
difference operators in the B-spline domain. In addition,
we have found the filters for the evaluation of the cubic
spline gradient and Laplacian to be very similar to certain
well known image processing operators (Sobel and La-
placian). Similarly, it can be verified that the use of quad-
ratic or bilinear splines yields a gradient estimate similar
to the one used in the Roberts edge detector [30]. The use
of smoothing spline or least squares approximations al-
lows a straightforward extension of these techniques to
the treatment of noisy data. As an example, we have de-
scribed a smoothing cubic spline edge detection algo-
rithm, which we have shown to be equivalent to the op-
timal Canny edge detector [10]. An interesting feature of
the present algorithm is that its computational cost is low
and is independent on the size of the smoothing window:
Only 10 multiplications and 10 additions per pixel are re-
quired to compute both components of the gradient.

Finally, we have shown that the method of least squares
spline approximation is well suited to the generation of
scale-space or multiresolution signal representations. This
concept has been illustrated with the design of a cubic
spline pyramid which stands as an interesting alternative
to the widely used Gaussian/Laplacian pyramid. Such
least squares techniques could be useful in a variety of
multi-resolution image processing algorithms.

APPENDIX A
CONVERGENCE OF THE LEAST SQUARES FILTERS

We recall that the least squares B-spline filter s, [1,
Sec. IV-D] is defined as

i
smk) = ([b5 * bolim) (). (A-1)
To study the limiting form of this operator as m goes to
infinity, we consider the limit:

1 + oo
lim <— 2 b bk — 1)>.
m—+o00 \M [=—-
Using the definition of the discrete B-spline kernels and
defining x = k/m where k is fixed, this expression is writ-
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ten as

+ oo
lim <l 2 B/ mB" (x — l/m)>.
m—+00 \MIl=-x
The term inside the bracket can be interpreted as a Rie-
mann sum with step size: Ay = 1 /m. As m goes to infin-
ity, or equivalently, as Ay tends to zero, this sum con-
verges to the integral:

S BB -y dy = B ) (A-2)

which is evaluated based on the convolution property of
B-spline functions [1, eq. (2.9)]. Accordingly, we have
that

1 + ™
lim <— 2 bbbk — 1)>
m—-+0 \M|=—-w
= lim B**'(k/m) = lim b>*'(k) (A-3)
m— +o m-— + oo
from which, we conclude
1
m—+oo M
= lim [y ", K0 =567 k. (A4
m— -+

APPENDIX B
LiNK WITH THE CANNY/DERICHE OPERATOR

According to Deriche, the transfer function of the 1D
edge detector satisfying Canny’s condition of optimality
with some appropriate boundary conditions is given by
(28]

az™! az

F@y =17 b +be? 1+bz+be BV
with
a = —ce *sin (w)
b, = —2¢ 7 cos (w)
by = e (B-2)

where o and w are the filter parameters and where c is a
scaling constant. We choose to rewrite this expression as

a(l — bz)(Z_] - 2)

F(z) = .
@ A+ bz7" + bz HA + bz + byz?)

(B-3)

If we define ¢, = a(l — by) and p = e~ %, we see that

F@) = S3@6 " —2) (B-4)
which clearly indicates that this filter corresponds to the
discrete differentiation of the smoothing cubic spline filter
(Section IV-B). If we apply a smoothing spline low-pass
filter, as defined by (3.1), to reduce noise in the orthog-
onal direction, we obtain the two-dimensional filters for
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the evaluation of the horizontal and vertical gradient com-
ponents:

Fo(z), 22) = S1@)Sx@) (27" — 2))B1(2)

F,(zi, ) = S3@)Sa@)B1 ()7 — 7). (B-5)

It is clear from (B-5) that the smoothing needs to be per-
formed only once and that these operations are equivalent
to the ones performed by the block diagram in Fig. 6. In
the Deriche algorithm as well as in the approach described
in [15], the smoothing filter used in the orthogonal direc-
tion does not include the term B? ).

]
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