Asymmetry Analysis of Cingulum Based on Scale-Invariant Parameterization by Diffusion Tensor Imaging

Gaolang Gong, Tianzi Jiang, Chaozhe Zhu, Yufeng Zang, Fei Wang, Sheng Xie, Jiangxi Xiao, and Xuemei Guo

1National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, People’s Republic of China
2Department of Radiology, Peking University First Hospital, Beijing, People’s Republic of China

Abstract: Current analysis of diffusion tensor imaging (DTI) is based mostly on a region of interest (ROI) in an image dataset, which is specified by users. This method is not always reliable, however, because of the uncertainty of manual specification. We introduce an improved fiber-based scheme rather than an ROI-based analysis to study in DTI datasets of 31 normal subjects the asymmetry of the cingulum, which is one of the most prominent white matter fiber tracts of the limbic system. The present method can automatically extract the quantitative anisotropy properties along the cingulum bundles from tractography. Moreover, statistical analysis was carried out after anatomic correspondence specific to the cingulum across subjects was established, rather than the traditional whole-brain registration. The main merit of our method compared to existing counterparts is that to find such anatomic correspondence in cingulum, a scale-invariant parameterization method by arc-angle was proposed. It can give a continuous and exact description on any segment of cingulum. More interestingly, a significant left-greater-than-right asymmetry pattern was obtained in most segments of cingulum bundle (−50–25 degrees), except in the most posterior portion of cingulum (25–50 degrees). Hum Brain Mapp 24:92–98, 2005.

Key words: asymmetry; cingulum; DTI; fiber-based analysis; diffusion anisotropy

INTRODUCTION

Brain asymmetry has been studied widely in terms of structure and function [Toga and Thompson, 2003]. Most studies focused on gray matter [Amunts et al., 1996; Kertesz et al., 1986; Steinmetz, 1996]. Recently, with the rapid development of diffusion tensor imaging (DTI), a new imaging technique providing some meaningful measure for white fiber tract organization, increasing attention has been focused on exploring asymmetry of white matter structure. Such asymmetry may be relevant to specific functions of the brain, which are lateralized in humans [Chi et al., 1977; Galaburda et al., 1978]. Some progresses have been made in this field. For instance, left–right asymmetry of diffusion anisotropy in white matter beneath the subinsular cortex has been found, which was considered as a possible reason for the asymmetry of auditory cortex and Wernicke’s area [Cao et al., 2003].
SUBJECTS AND METHODS

Subjects

Of 37 healthy, right-handed subjects enrolled, 31 subjects participated in the final analysis (20 men, 11 women; mean age, 25.6 ± 3.6 years; age range, 20–40 years). Informed consent was obtained after a complete description of the study.

MR Data Acquisition

All MR imaging was carried out on a 1.5-Tesla MR scanner (GE Signa 1.5T Twinspeed) equipped with shielded magnetic field gradients of up to 40 mT/m. A standard head coil was used for radio frequency (RF) transmission and reception of the nuclear magnetic resonance (NMR) signal. Head motion was minimized with restraining foam pads offered by the manufacturer.

Diffusion-weighted imaging was acquired with singleshot echo planar imaging (EPI) sequence in alignment with anterior–posterior commissure plane (Fig. 1). The diffusion sensitizing gradients were applied along 25 non-collinear directions with a value = 1,000 s/mm^2, together with an acquisition without diffusion weighting (b = 0). In total, 12 slices were gathered with the most caudal slice passing through the genu of corpus callosum to cover as many cingulum bundles as possible. The acquisition parameters were as follows: TR = 4,000 ms; TE = 80 ms; matrix = 128 × 128; field of view (FOV) = 24 × 24 cm; number of excitations (NEX) = 3; slice thickness = 3 mm without gap. Total scan time for the DTI sequence was 5 min 20 s. High-resolution 3-D T1-weighted image (TR = 11.3 ms; TE = 4.2 ms; FOV = 24 × 24 mm; matrix = 128 × 128; slice thickness = 2.4 mm; NEX = 2) was also obtained.

DTI Data Calculation

Diffusion tensor matrix was calculated according to the Stejskal and Tanner equation [Stejskal and Tanner, 1965]. Three pairs of eigenvalues (λ1, λ2, and λ3) and eigenvectors were obtained by diagonalization of the tensor matrix. The principal direction at each point was given by the eigenvector that corresponds to the largest eigenvalue, and fractional anisotropy (FA) [Basser and Pierpaoli, 1996] was calculated according to the following formula:

\[
FA = \sqrt{\frac{3[(\lambda_1 - \langle \lambda \rangle)^2 + (\lambda_2 - \langle \lambda \rangle)^2 + (\lambda_3 - \langle \lambda \rangle)^2]}{2(\lambda_1^2 + \lambda_2^2 + \lambda_3^2)}}
\]

\[
\langle \lambda \rangle = \frac{\lambda_1 + \lambda_2 + \lambda_3}{3}
\]

(1)
Tractography

The fiber-tracking algorithm used in our study is similar to the method proposed by Lazar et al. [2003]. Briefly, a 2-D seed region including the fascicules of interest was first placed manually and seed points were defined in this region. The tracking algorithm then moved a fixed distance (in this case 0.3 mm) along the principal direction from each seed point. With diffusion tensor deflection, new diffusion orientation was estimated from the continuous tensor field at this new point, and the algorithm then moved the distance along the new direction. The forward movement continued until the FA was below some threshold (in this case 0.2). The other section of the tract passing through these seed points in the opposite direction was then reconstructed according to the same procedure. The algorithm parameters were as follows: deflection operator \(n = 2; \alpha_x = 1, \alpha_y = \alpha_z = 0.5 \) (equation [3] of Lazar et al. 2003); and \(f = 0.5, g = 0.5 \) (equation [4] of Lazar et al. 2003). Color-coded tensor image [Pajevic and Pierpaoli, 1999] could provide rough information to distinguish different white fibers, and for this reason it was used to specify the seed regions. Seed points were then defined on a regular grid in these regions. In fact, the traced fibers from tractography include some artifact pathways due to noise and partial volume effect. To address this problem, a multi-ROI approach was introduced [Catani et al., 2002; Conturo et al., 1999]. In this study, those trajectories that had not passed through all these regions were removed.

Mapping of Fibers Onto a Standardized Coordinate Frame and Parameterization

For population analysis, a standardized coordinate frame is necessary for all tracked cingulum bundles to reduce anatomic variability across subjects. To this end, all cingulum bundles were analyzed in a common polar coordinate system. Specifically, the coronal slice passing the anterior commissure (AC) point and perpendicular to the anterior commissure–posterior commissure (PC) line was taken as the reference plane (i.e., \(S_0 \) in Fig. 2). To identify the AC point, the 3-D T1-weighted image was registered to the corresponding DTI data of the same subject. We registered the 3-D T1-weighted image to the image without diffusion weighting (i.e., \(b = 0 \) image) by a rigid transformation manually in Analysis of Functional Neuroimages (AFNI) [Cox, 1996]. The AC point then was identified interactively by an expert in the transformed 3-D T1-weighted image. The position of seed regions would partly influence the tractography; therefore, such a position should be approximately uniform for all subjects. In this case, we chose the reference plane (i.e., \(S_0 \) in Fig. 2) for placement of seed regions, which was relatively unchangeable for the population and located nearly across the middle of the cingulum.

Besides the spatially common position of seed regions, correspondence of the other different parts of cingulum is also needed across subjects. The traced fibers by tractography with the common origin were parameterized by arc angle, rather than arc length [Fillard et al., 2003]. The whole process is shown in Figure 2. The left–right line passing the AC point was taken as the axis of rotation, seed plane \((S_0) \) denotes the reference plane; sampling plane is denoted by \(S_0, S_1, \ldots, S_n \). Cingulum, which was marked by gray, was parameterized by arc angle (\(\theta \)) in the new polar coordinate system.

Statistical Analysis

For traced cingulum bundles, the FA value that each location point has can be used as its characteristics. FA values for unilateral cingulum bundles with the same arc angle were averaged to obtain a typical FA for that arc angle; thus, the typical FA distribution along the cingulum as a function of arc angle could be obtained for each subject. For each arc angle, repeated measures analysis of variance (ANOVA) with gender (males, females) as an inter-subject factor and side (left, right) as an intra-subject factor, was used to test for differences of FA values.

RESULTS

Cingulum bundles are dispersed widely in the most anterior and posterior portions, which prohibits reliable measurement of diffusion, and for this reason we concentrated our analysis on the part of the tract dorsal to corpus callosum. We chose a sampling interval (\(\theta \)) = 1 degree, and the angle range of anterior and posterior was 50 degrees, respectively. The traced cingulum bundles in six subjects were not long enough to cover the arc angle range (−50 to 50 degrees); these six subjects were excluded from the final analysis.

Figure 3A illustrates the reconstruction of the left and right cingulum tracts in one subject. Red and white indicate
anterior and posterior portion of cingulum bundles, respectively. The FA value distribution along bilateral cingulum bundles as a function of arc angle was plotted for this subject in Figure 3B.

Repeated measures ANOVA, with gender (males, females) as an inter-subject factor and side (left, right) as an intra-subject factor, was carried out using SPSS v.11.5 for each arc angle. Figure 4A and 4B illustrate the mean and standard deviation (SD) of FA distribution for males and females in both sides, respectively. The \(P \)-value distribution corresponding to side effect was plotted in Figure 4C. There were no contiguous significant differences by gender effect or gender-by-side interaction; thus, the corresponding \(P \)-value distribution was not plotted; however, the side difference was significant (\(F[1, 29] > 4.18, P < 0.05 \)) in most segments of cingulum bundles (–50 to 25 degrees), except in the most posterior portion of cingulum (25–50 degrees) (Fig. 4C). Figure 4A and 4B also demonstrated such a left-greater-than-right asymmetry pattern in both males and females. Although the mean of FA values shows some difference between males and females in some posterior parts of left cingulum and anterior parts of right cingulum, statistical analysis revealed no significant difference. In addition, Figure 4A and 4B also show a decrease of FA value from the middle to the anterior and the posterior cingulum.

DISCUSSION

Diffusion anisotropy was investigated to ascertain asymmetry of cingulum. A marked left-greater-than-right asymmetry pattern was observed in the most segments of cingulum bundles, except in the most posterior segment. No significant differences between males and females were found. These results were obtained by FA value comparison along the cingulum. We used anatomic alignment with a scale-invariant parameterization to establish correspondence in cingulum across subjects. To test for differences of FA values along the cingulum, we used repeated measures ANOVA with gender (males and females) as an inter-subject factor and side (left and right) as an intra-subject factor. Our results were obtained without correction for multiple comparisons. With strict correction, such an asymmetry pattern would not be evident in the vicinity of 41 degrees anteriorly and 12 degrees posteriorly (Fig. 4C).

Diffusion tensor imaging, as a relatively new MRI technique, provides information about the random displacement of water molecules in the brain tissue [Basser et al., 1996]. Using this information, investigation of the white matter characteristics and anatomic connections between different regions could be carried out noninvasively [Catani et al., 2003; Peled et al., 1998]. Using DTI, much progress has been made in the studies of brain development, normal aging, brain asymmetry, brain function connectivity, and neurologic and psychiatric diseases [Filippi et al., 2001; Kubicki et al., 2002a,b]. Most results with DTI were found either by comparison of some indexes in ROIs or voxel-based analysis of registered image datasets [Lim et al., 1999]. However, ROI-based methods are not always reliable because of the uncertainty of ROI specification. DTI image registration across individuals is very complicated and continues to be developed.

With the development of tracking algorithms, MR index quantification based on tractography was introduced alternatively [Mori et al., 2002; Stieltjes et al., 2001; Xue et al., 1999]. Jones et al. [2003a,b] applied a fiber-based method to
the study of schizophrenia, and Fillard et al. [2003] recently proposed a similar scheme to study white matter structure. This method could automatically analyze diffusion properties along the fiber or geodesic path extracted from tractography. In addition, statistical analysis can be carried out along the tracts if anatomic alignment were established. In Fillard et al. [2003], traced bundles with the common anatomic origin were parameterized intuitively by arc length. The bundles were expressed by a point set, which was sampled by fixed geodesic path interval from a seed point, and then statistical analysis was used directly. Such parameterization, however, can only establish anatomic correspondence among subjects when the size of cingulum is equivalent. Because the sampling interval is just the fixed movement step mentioned in tractography and the fixed movement step in all subjects remains the same, such parameterization could lead to mismatch of the cingulum when the size of cingulum is variable.

To overcome this problem, a scale-invariant parameterization method was proposed in this study. Considering the C-shape of cingulum, we reparameterized the cingulum bundles with the common anatomic origin by arc angle. The AC point was considered as the center of the cingulum arc (i.e., the reference point during parameterization), which was inspired by the regional subdivision model for corpus callosum [Gabrielli et al., 1993]. Such parameterization can eliminate, at least partly, the effect of size variance from subject to subject; thus, cingulum correspondence across subjects could be established. Such an approach can only work for tracts that are approximately circular, such as the cingulum. Indeed, this approach also required manual drawing for the seed regions on 2D slice. To test the reproducibility, two raters, who are blind to the data, placed the seed regions for subjects independently, and then computer implemented the rest procedure with fixed parameters. Six subjects were selected randomly from the group, and the raters drew seed regions for each subject twice independently. For all arc angles, the inter-rater and intra-rater reliability ranged from 0.95–0.99.

Anisotropic water diffusion in white matter fibers initially has been explained mainly by the myelin sheath restricting water diffusion across axonal fiber tracks; however, the microscopic pictures that cause the anisotropic water diffusion remains unclear. Factors, which could affect the diffusion tensor, might include the density of white matter fibers, the average fiber diameter, and the directional similarity of the fibers [Westin et al., 1999]. Diffusion tensor is thus a meaningful measure of fiber tract organization [Beaulieu, 2002; Pierpaoli et al., 1996]. Such measurement could therefore be used, at least partly, to ascertain the asymmetry of white matter in the microstructural organization [Peled et al., 1998]. The greater anisotropy found in the left cingulum may reflect a higher density or directional similarity of fibers in the left cingulum. Such asymmetry may be derived from structural and functional differences between the two hemispheres during brain development. More investigation is needed to confirm this hypothesis.
needed to study the asymmetry related to development, gender, handedness, and age.

White matter fiber tracts are the basis of communications between brain regions. Consequently, studies of white matter fiber tracts may reveal some direct evidence on functional connectivity. Anterior cingulum is related mainly to the anterior cingulate cortex, which is associated with neural implementation of attentional control and other functions [Barch et al., 2000; Smith and Jonides, 1999; Van Veen et al., 2001], and morphologic asymmetry related to gender has been found also in anterior cingulate cortex [Yucel et al., 2001]. Moreover, the anterior cingulate cortex has been studied widely by psychiatrists, and much evidence has shown an asymmetry disturbance in anterior cingulate cortex in schizophrenia [Benes, 1993, 2000; Le Provost et al., 2003]. As mentioned previously, an asymmetry difference in cingulum between normal and schizophrenic patients bilaterally has been reported by ROI-based method [Kubicki et al., 2003; Wang et al., 2004]. Kubicki et al. [2003] measured FA in the portion of the tract dorsal to the body of the corpus callosum as a whole. The FA of this region in normal subjects showed a left-greater-than-right asymmetry pattern, which was consistent with our finding. The posterior cingulum, however, did not show such a pattern in the study by Wang et al. [2004]. The asymmetry of cingulum observed in our study may contribute to some functional difference between bilateral anterior cingulate cortices and posterior cingulate cortices, and thus could lead to a better understanding of the brain functional connectivity.

Although a left-greater-than-right asymmetry pattern was observed in most parts of cingulum in our study, the interpretation of these results requires some caution. For example, the validation of tractography remains a common problem in DTI. One interesting issue is the interaction between the fractional anisotropy and the thickness of the bilateral cingulum bundles that might be naturally variable. For tractography, change of FA-threshold can affect the thickness and length of cingulum, but it does not affect the radius of cingulum. In our method, the change of the cingulum length does not affect the FA measurement, although the thickness may have an impact on the FA measurement. The interaction between FA-threshold for tractography and the FA measurement can therefore be viewed as the interaction between the cingulum thickness and the FA measurement. We have not studied such an interaction in the present research because measurement of cingulum thickness is beyond the scope of this research; however, we would like to study this issue in the future.

In summary, the asymmetry of cingulum bundles was analyzed systematically based on a new scale-invariant parameterization, and a left-greater-than-right asymmetry pattern along the cingulum was observed in this study.

ACKNOWLEDGMENTS

We thank the anonymous referees for their significant and constructive comments and suggestions, which greatly improved the article. We thank Prof. J. Zhang at University of Kentucky for checking the use of English language, as well as Y. He, Y. Lu, J. Wang, and F. Qian for their comments and support for this work.

REFERENCES

