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Several theories link processes of development and aging in humans.
In neuroscience, one model posits for instance that healthy age-
related brain degeneration mirrors development, with the areas
of the brain thought to develop later also degenerating earlier.
However, intrinsic evidence for such a link between healthy aging
and development in brain structure remains elusive. Here, we show
that a data-driven analysis of brain structural variation across 484
healthy participants (8–85 y) reveals a largely—but not only—trans-
modal network whose lifespan pattern of age-related change intrin-
sically supports this model of mirroring development and aging. We
further demonstrate that this network of brain regions, which devel-
ops relatively late during adolescence and shows accelerated degen-
eration in old age compared with the rest of the brain, characterizes
areas of heightened vulnerability to unhealthy developmental and
aging processes, as exemplified by schizophrenia and Alzheimer’s
disease, respectively. Specifically, this network, while derived
solely from healthy subjects, spatially recapitulates the pattern of
brain abnormalities observed in both schizophrenia and Alzheimer’s
disease. This network is further associated in our large-scale healthy
population with intellectual ability and episodic memory, whose
impairment contributes to key symptoms of schizophrenia and
Alzheimer’s disease. Taken together, our results suggest that the
common spatial pattern of abnormalities observed in these two
disorders, which emerge at opposite ends of the life spectrum,
might be influenced by the timing of their separate and distinct
pathological processes in disrupting healthy cerebral development
and aging, respectively.
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Many phylogenetic or ontogenetic models attempt to relate
development and aging at genetic, molecular, or cognitive

systems levels (1–4). In neuroscience, one of the most popular
hypotheses in this respect postulates that the process of healthy
age-related brain decline mirrors developmental maturation.
This concept was first introduced in 1881 as a “loi de régression”
(Ribot’s law) when Théodule Ribot, a French philosopher, ob-
served that the destruction of memories progresses in reverse
order to that of their formation: from the unstable to the stable,
from the newly formed memories to older “sensory, instinctive”
memories (5). More generally, this hypothesis postulates that
the sequence of events associated with brain decline should
present itself in reverse order to the series of events related to
brain development, with brain regions thought to develop rela-
tively late—at both ontogenetic and phylogenetic levels—also
degenerating relatively early (2, 6, 7).
One way of tracking this hypothesized mirroring pattern of

development and aging in the human brain is to use the in-
formation provided at a macroscopic level by structural MRI in
large-scale, lifespan human populations. Although structural

MRI does not distinguish between the various cellular mecha-
nisms underpinning development and aging processes [e.g.,
dendritic and synaptic remodeling, neurogenesis and neuronal
death, astrogliosis, (de)myelination], this technique is sensitive to
detect the overall contribution of these mechanisms to macro-
scopic age-related changes in brain structure (8–10).
In 2000, Raz (11) presented for the first time MRI data sug-

gesting that the chronological order of completion of intracortical
fibers myelination was associated with age-related differences in
cortical volume. In particular, Raz (12) later noted that “the
pattern of differential brain aging suggests that phylogenetically
newer and ontogenetically less precocious brain structures such as
association cortices and the neostriatum show increased vulner-
ability to the effects of aging . . . follow(ing) the rule of (phylo-
genetically and ontogenetically) last-in, first-out” (12). Direct
and intrinsic evidence for a clear link between brain structural
development and aging lending support to this evolutionary–
developmental “retrogenesis” model [or the “last-in, first-out”
model as Raz (12) and others call it] is needed, however. Most of
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the structural imaging studies investigating relationships be-
tween development and aging have so far led to different, and
sometimes contradictory, results (13, 14). One possible explana-
tion for this inconsistency is that these studies have tested only one
specific pattern of age-related change and have focused on age
subgroups or on predefined regions of the brain.
Here, we took a purely data-driven approach to assess the

intersubject brain structure variability among 484 healthy par-
ticipants covering most of the lifespan (8–85 y). We analyzed the
structural brain images of these healthy subjects using a linked
independent component analysis (ICA) (SI Materials and Methods)
(15). This approach provides an automatic decomposition of the
images into spatial components characterizing the intersubject
brain structural variability, i.e., each spatial component represents
a mode of variation of brain structure across all participants.

Results
We obtained 70 independent components from this unbiased
decomposition that was solely based on the structural infor-
mation in the gray matter images. As the ICA is, thus, blind to
any of the participants’ demographics or cognitive measures, we
identified post hoc two components that showed strong statisti-
cal, as well as practical, association with age (i.e., significance was
measured here using effect magnitude in addition to corrected
P values) (Fig. 1). The first independent component (IC1) rep-
resented the expected dominant mode of variation showing the
monotonic decrease of the whole gray matter with increasing age
typically reported in large-scale lifespan studies (16). Spatially, it
essentially described the standard deviation across all gray mat-
ter images (explaining ∼50% of the structural variance across
participants) (SI Materials and Methods), and post hoc analysis
revealed that age explained 90% of IC1 variance.
Critically, our data-driven approach made it possible to iden-

tify a distinct second age-related component (IC4) accounting
for a more subtle part of the structural variance, and showing a
nonmonotonic post hoc relationship with age. It defined a spa-
tially specific network of mainly transmodal regions encom-
passing heteromodal cortex, and limbic and paralimbic regions
(17): lateral prefrontal cortex, frontal eye field, intraparietal
sulcus, superior temporal sulcus, posterior cingulate cortex, and
medial temporal lobe (Fig. 2, Fig. S1, and Table S1). Additional
regions included the parietal operculum (especially OP1), crus of
the cerebellum, fusiform and lingual gyrus, supplementary motor
area (SMA), and a focal, lateral portion of the primary motor
cortex (M1). Post hoc analysis revealed that this independent
component IC4 had a striking inverted-U relationship with age
peaking at 40 y (Figs. 1 and 2 and SI Materials and Methods).
While this component accounted for 3% of the structural vari-
ance across all 484 participants, it had a strong relationship with
age, as age explained 50% of the variance within the IC4 com-
ponent (Fig. S2).
Broadly speaking, each component of an ICA describes

a mode of variation—here, specifically, a mode of variation of
brain structure—over and above variation associated with all
other components. Each voxel of the structural image for every
participant can be seen as the sum of each of these components
for that same voxel, weighted by the amount of structural vari-
ance that they explain. Therefore, in the regions defined by the
second age-related component IC4, the variation in brain
structure across subjects is explained by the additional effect of
this symmetric inverted-U shape on top of the dominant mode of
strong monotonic decrease of the whole gray matter with age
seen in IC1 (Fig. 3). This inverted-U component IC4 thus
describes a network of regions which, compared with the rest of
the gray matter, develop relatively late and slowly during ado-
lescence and young adulthood, but show accelerated age-related
degeneration in old age (Fig. 3).
This brain network, characterized at one end of the life

spectrum by healthy late development and at the other end by
healthy accelerated degeneration, might therefore show particular
vulnerability to disorders that impact on brain structure during
adolescence (18) and aging (19), regardless of their etiology. To
test this hypothesis, we used structural imaging data from a study
of Alzheimer’s disease and a study of adolescent-onset schizo-
phrenia, two diseases that serve here as models of unhealthy aging
and development, respectively, to compare their spatial pattern of
structural vulnerability with the inverted-U spatial network of IC4.
It should be noted at this stage that this hypothesis does not
suppose that these disorders should have common pathological
processes causing brain structural damage. What we are interested
in here is whether the timing of such distinct pathologies in dis-
rupting normal brain development and aging, at a time when
regions of the inverted-U network are experiencing the greatest
change, leads to similar patterns of structural damage in this
network. We found that the spatial distribution of this inverted-U
component IC4 not only closely matched the gray matter regions
which show accelerated atrophy in Alzheimer’s disease (r = 0.55,

Fig. 1. Of all eight age-related components, only two achieved clear
practical significance. We assessed post hoc the relationship of each of the
70 components with age (using polynomial fit). Of eight statistically signif-
icant components (all P < 0.05 corrected for multiple comparisons), only two
achieved clear practical significance (IC1 and IC4), as measured by the per-
centage of age-related variance explained with a quadratic fit (indicated by
the R2 values): the “global” dominant mode showing monotonic decrease of
the whole gray matter with age (IC1), with 90% of the variance of IC1 across
subjects explained by age (R2 = 0.9), and the inverted-U component (IC4),
with 50% of IC4 variance explained by age (R2 = 0.5). R2 values for all other
components were below 0.1. The inverted-U component IC4 showed a sym-
metric, strong nonmonotonic relationship with age and presented the stron-
gest quadratic fit as measured by its quadratic coefficient (q = −1.8 × 10−3).
a.u., arbitrary unit.
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P < 10−3) (Fig. 4, SI Materials and Methods, and Figs. S1 and S3),
but also matched those regions showing an altered developmental
trajectory in adolescent-onset schizophrenia (r = 0.48, P < 10−3)
(Fig. 5). Direct comparison of the spatial distribution between
Alzheimer’s disease and adolescent-onset schizophrenia pattern of
macrostructural abnormalities also revealed a good spatial cross-
correlation (r = 0.48, P < 10−3) (Fig. S3).
Of all 70 components, this close resemblance to both schizo-

phrenia and Alzheimer’s disease spatial patterns was only specific
to the inverted-U mode of variation IC4 and the dominant mode
of variation IC1, as the latter simply represents the standard de-
viation across all subjects (Fig. S2). Although the inverted-U
component was purely derived from healthy individuals, dis-
crimination analysis using this spatial network also allowed for
good separation of brain scans between patients with either
Alzheimer’s disease or schizophrenia and corresponding matched
controls (72% and 83% accuracy, respectively) (SI Materials
and Methods).
The inverted-U component IC4 also differed between males

and females (Fig. S4). Females showed a significantly higher and
slightly later peak with age than males (41 versus 39 y, respectively;
P = 4.5 × 10−3) (SI Materials and Methods). This few years of dif-
ference in lifespan trajectory of a relevant brain structural compo-
nent could be related to the later age of onset of symptoms observed
in females with schizophrenia and Alzheimer’s disease (20, 21).
Finally, additional regression analyses in the large-scale life-

span healthy population showed specific, strong correlations
between the strength of the inverted-U component IC4 and
episodic memory and intellectual ability, deficits in which are
hallmarks of Alzheimer’s disease and schizophrenia, respectively
(P << 10−3) (SI Materials and Methods). More specifically, there
was a moderate correlation of r = 0.31 between the network
strength and long-delay free recall on the California Verbal
Learning Test (CVLT), which is known to be the most salient
measure of memory deficit in mild cognitive impairment and
Alzheimer’s disease (Fig. 4) (22). There was also a good corre-
lation of r = 0.40 between the network strength and fluid in-
telligence (block design; Wechsler Abbreviated Scale of Intelligence,
WASI) (Fig. 5). We found a more modest correlation of r = 0.21
between the network strength and crystallized intelligence
(vocabulary; WASI) (Fig. S5). However, when looking at the
same relationship only in the healthy participants under 40 y
old (age peak of the inverted-U component), we found a very
strong correlation of r = 0.52, consistent with the notion
that verbal intelligence crystallizes to a plateau in middle age
(Figs. S5 and S6).

Discussion
Here, a data-driven analysis of brain structural variation across
484 healthy participants revealed a previously unseen component
showing a symmetric inverted-U relationship with age, and spa-
tially characterizing a biologically meaningful network of gray
matter regions largely involved in transmodal processing. This
network of brain regions not only showed mirroring of healthy
developmental and aging processes, but also demonstrated
heightened vulnerability to etiologically distinct clinical disorders
linked to abnormal adolescent and aging trajectories (schizo-
phrenia and Alzheimer’s disease) and recapitulated the pattern
of macrostructural abnormalities seen in both disorders.
Two features of our methodological approach were crucial in

revealing this inverted-U component IC4 showing symmetrical
developmental and aging processes. First, no constraint—spatial
or age-related—was imposed on the data. Second, the method
allowed us to detect more subtle modes of variation over and
above other global components that dominate the intersubject
variability, such as seen in IC1, and that are typically reported
in lifespan studies (16). This decomposition approach thus
revealed this IC4 component which, while explaining only a
modest amount of the structural variance across all 484 healthy
subjects (3%), had a strong relationship with age (as age
explained 50% of the IC4 variance) and accounted for a sub-
stantial part of the spatial variance of Alzheimer’s disease and
adolescent-onset schizophrenia patterns of abnormalities (30%
and 23%, respectively) (Fig. S2).
These results, intrinsically linking development, aging, and two

disorders with very distinct ages of onset of symptoms and neuro-
pathological processes, might seem surprising at first. But they
become much more intuitive when taking several considerations
into account. First, our network of regions in which development
and aging mirror one another includes mainly transmodal regions.
The heteromodal cortex (or transmodal cortex when including
limbic and paralimbic regions) encompasses the highest synaptic
levels of bottom-up processing (17). Because it develops later
than the rest of the brain, the transmodal cortex is a strong
candidate for showing such retrogenesis or last-in, first-out pro-
cesses. Second, both Alzheimer’s disease and schizophrenia have
been linked, separately in the literature, to a selective damage to
the heteromodal cortex. Indeed, neuropathological and neuro-
imaging findings suggest that primary lesions responsible for the
classic clinical feature of schizophrenia occur in the phyloge-
netically recent heteromodal cortex (23, 24). Separately, it has
been suggested that the pattern of vulnerability in Alzheimer’s
disease is distributed specifically following “nodes” distributed
within the heteromodal cortex (and showing substantial overlap
with the default mode network) (25). Interestingly, a retrogenic
neuropathological pattern in terms of neuronal cell loss and

Fig. 2. Network of gray matter regions showing the inverted-U relationship with age. (A) Spatial network corresponding to the second age-related in-
dependent component IC4 (orange) overlaid on the gray matter average across all 484 healthy participants (thresholded for better visualization at Z > 4). Left
is right. (B) Second age-related independent component IC4 load for each of the 484 participants plotted against age (quadratic fit is in turquoise; P = 6 × 10−73)
(SI Materials and Methods). a.u., arbitrary unit.
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myelin vulnerability has also been observed in Alzheimer’s
disease (7).
Not all regions in the inverted-U spatial network of IC4 were

transmodal. However, connectivity of OP1 may predispose it to
perform more integrative aspects of somatosensory processing
(26), while the crus of the cerebellum is most connected to the
heteromodal prefrontal and posterior parietal cortices (27). One
region that is known to ontogenetically and phylogenetically
develop late, but is absent from our network, is the frontal pole
(Brodmann area 10) (28). We did not find any evidence for late

maturation in this region whose function is still debated (29, 30),
which is in line with findings from the MRI study by Hill et al. (2)
elegantly linking high-expanding and slowly maturing cortical
regions during evolution and human development. However, the
lateral portion of M1, which is not typically thought to develop
late or degenerate early, was present in our network, and also
within the regions reported in the MRI study by Hill et al. (2).
The fact that, using structural MRI, we are probing information
at a macroscopic scale, which might encapsulate various cellular
mechanisms such as myelination, astrocytosis, or vascularization,
might explain these apparent discrepancies. At this resolution, it is
not possible to resolve which mechanisms may underlie the
macroscopic cortical changes that we observe and peak at 40 y (8).
This study also comes with the limitations inherent to large cross-
sectional datasets across the lifespan, such as possible cohort
effects and selection bias, which might influence the age peak to
some degree (31). Various imaging studies support a similar
timeline for late development (32–35), however, while recent
cellular findings show, for instance, that myelination and re-
modeling of synaptic spines extend later than previously thought,
beyond adolescence and young adulthood (36, 37).
It should be noted that relatively late maturation in the lateral

part of the primary motor cortex and small part of lingual gyrus is
also seen during healthy adolescence and in adolescent-onset
schizophrenia (38, 39). We have previously found that adolescent-
onset schizophrenia exhibits an altered maturational pattern com-
pared with matched healthy adolescents (38), with differences in
M1, SMA, and lingual gyrus initially present at 16 y, and fading
away 2.5 y later. One difference between the inverted-U network of
IC4 and the spatial pattern of adolescent-onset schizophrenia was
the absence of medial temporal lobe abnormalities in the latter
case (Figs. S1 and S3). This apparent discrepancy is likely due to
the fact that we observed changes over a relatively short period of
time in adolescence (16–18.5 y on average), which did not span to
young adulthood when hippocampus volume still changes (40).
Remarkably, the white matter myelination in the frontal lobe,

as assessed using diffusion imaging and transverse relaxation
rate, reveals a similar inverted-U relationship, peaking at a
comparable age (41). It is therefore possible that what we ob-
serve here as a subtle effect in the gray matter (on top of the
dominating loss of gray matter) relates to the myelination pro-
cess of intracortical fibers (12). This process might also explain
why the spatial distribution of the inverted-U component IC4,
and the maps of structural abnormalities in schizophrenia and
Alzheimer’s disease, is more prominent in the fundus of the sulci
as opposed to gyral crowns. Known histological differences be-
tween the two, such as the facts that the cortex in the fundus has
a greater cell density and, most relevantly, that fundi have thicker
supragranular—phylogenetically newest and latest myelinated—
layers (42), might partly explain this topography of the gray
matter volume differences. Neuropathological studies also in-
terestingly show that β-amyloid distribution in Alzheimer’s disease
and reduced cell density in schizophrenia are both preferentially
found in the fundus of sulci (43, 44). We cannot exclude the
possibility, however, that the distinct topography of the cortical
fundi and subcortical structures, as more “internal” structures in
the brain, and their specific histology and fiber orientation interact
with the imaging technique, contrast, and limited resolution used
here, so that we are more sensitive to capture macroscopic dif-
ferences—due to the myelination process, for instance—in these
specific parts of the cortex. It is therefore possible that the same
brain regions of the inverted-U network might exhibit the same
age-related changes in the gyri, if higher-resolution and compar-
ative histology were available (45).
Another feature of the inverted-U component IC4 was that its

lifespan trajectory matched that of fluid and crystallized in-
telligence (that is, before it crystallizes) and, to a lesser degree,
episodic memory in the 484 healthy subjects (Fig. S6). As a con-
sequence, there was a linear relationship between the inverted-U
component load and each of these cognitive measures, very
much in line with the above-mentioned quadratic, inverted-U

Fig. 3. Regions of the inverted-U network develop relatively slowly during
adolescence but present accelerated age-related degeneration at an old
age. In the ICA approach, the gray matter volume relationship with age at
each voxel is explained by a weighted combination of all ICA components
contributing to that voxel. (A) A widespread component including most of
the gray matter explains 50% of the structural variation in the images (IC1).
(B) The component of interest (IC4) explains 3% of the structural variation
across images. (C) The relationship with age in the “core” of the inverted-U
network of IC4 (as defined here for visual interpretation by using a threshold
of Z > 4; B) is therefore explained by a combination of A and B, meaning that
there is an additional effect on top of the dominant pattern of monotonic
decrease in whole gray matter volume with increasing age as seen in IC1. As
a result, compared with the whole of the gray matter (gray line in C), regions
of the inverted-U network of IC4 (turquoise line in C) develop relatively
slowly during adolescence and young adulthood (the turquoise line shows
a less steep slope than the gray line) but also show accelerated age-related
degeneration at old age (the turquoise line shows a steeper slope than the
gray line). a.u., arbitrary unit.

4 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1410378111 Douaud et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410378111/-/DCSupplemental/pnas.201410378SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410378111/-/DCSupplemental/pnas.201410378SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410378111/-/DCSupplemental/pnas.201410378SI.pdf?targetid=nameddest=SF6
www.pnas.org/cgi/doi/10.1073/pnas.1410378111


myelination process which followed closely the same age trajec-
tory as a functional performance measure (46). Following these
observations, Bartzokis (47) proposed a myelin “development-to-
degeneration” model of the human brain, according to which
“myelin development, maintenance, and its eventual breakdown
are essential to understanding . . . cognitive and behavioral tra-
jectories through life” and that shed light on Alzheimer’s disease
as a developmental disorder “requiring myelination as an es-
sential permissive step” (47). This analogous result reinforces the
idea, which cannot be tested with the imaging technique and
resolution available for this study, that the effect observed here
in the gray matter might be somewhat related to myelination.
Using a data-driven approach, we have therefore been able to

characterize a biologically meaningful component intrinsically
linking late development, early degeneration, and vulnerability
to disease. There is mounting evidence that the pattern of vari-
ous brain disorders can be explained to some extent by observing

the healthy brain. Deviations from normal trajectories of brain
maturation have been identified in developmental disorders (38,
48), while some neurodegenerative disorders seem to progress
within specific healthy brain networks (23, 49). One recent study
has also shown that data-driven decomposition of white matter
tractograms in healthy young subjects recapitulates the pattern
of abnormalities in dementia (50). Here, we show how the
symmetric inverted-U component, while derived without any
prior hypothesis from healthy subjects’ brain structure, (i) spa-
tially recapitulates the structural vulnerability of two etiologically
distinct disorders emerging at opposite ends of the life spectrum
(schizophrenia—aptly named “dementia praecox” until the mid-
1950s—and Alzheimer’s disease), (ii) accurately discriminates
these two disorders from their matched healthy group, and (iii) is
associated, in this large-scale lifespan healthy population, with
cognitive functions whose impairment are key symptoms of
schizophrenia and Alzheimer’s disease. We thus suggest that the

Fig. 4. The inverted-U component spatially corresponds to the structural pattern of abnormalities in Alzheimer’s disease and correlates with episodic
memory in healthy subjects. (A) The spatial network corresponding to the inverted-U component IC4 (orange) closely matches the gray matter found to be
atrophic in Alzheimer’s disease compared with healthy elderly (blue; thresholded for better visualization at P < 0.001; n = 120; voxel-by-voxel spatial cross-
correlation: r = 0.55; P < 10−3). (B) The inverted-U component load for each of the healthy participants plotted against episodic memory score (CVLT long-
delay recall; n = 370; linear fit is in turquoise; r = 0.31; P = 1.2 × 10−9) (SI Materials and Methods). Results presented here have not been age-corrected, as the
relationship between episodic memory scores and age was highly nonlinear. In fact, their lifespan trajectory matched that of the inverted-U component
(Fig. S6), explaining the linear relationship between the two presented in B. a.u., arbitrary unit.

Fig. 5. The inverted-U component spatially corresponds to the structural pattern of abnormalities in adolescent-onset schizophrenia and correlates with in-
telligence scale in healthy subjects. (A) The spatial network corresponding to the inverted-U component IC4 (orange) closely matches the gray matter showing
altered trajectory in adolescent-onset schizophrenia compared with healthy adolescents (green; thresholded for better visualization at P < 0.05; n = 24; voxel-
by-voxel spatial cross-correlation: r = 0.48; P < 10−3). (B) The inverted-U component load for each of the healthy participants plotted against intellectual ability
[e.g., block design score (fluid intelligence) from the Wechsler Abbreviated Scale of Intelligence; n = 439; linear fit is in turquoise; r = 0.40; P = 1.8 × 10−18] (SI
Materials andMethods and Fig. S5 shows the plot for crystallized intelligence). Results presented here have not been age-corrected, as the relationship between
block design scores and age was highly nonlinear. As for episodic memory scores, lifespan trajectory of fluid intelligence matched that of the inverted-U
component (Fig. S6), explaining the linear relationship between the two presented in B. a.u., arbitrary unit.
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spatial pattern of structural abnormalities common to these dis-
orders might be determined crucially by the timing of the interplay
of their specific pathophysiological processes with normal brain
development and aging, specifically in regions in which these two
processes mirror one another.

Materials and Methods
The study was approved by the Regional Ethical Committee of Southern
Norway; 484 right-handed healthy volunteers covering much of the lifespan
(age range from 8 to 85 y old; 220 males) underwent the same imaging
protocol with structural T1-weighted images performed using a 12-channel
head coil on a 1.5 T Siemens Avanto Scanner (Siemens Medical Systems). A
linked ICA decomposition into 70 components was run on brain structural
information derived from three complementary types of gray matter image
processing: gray matter volume obtained from an optimized voxel-based
morphometry protocol using FMRIB Sofware Library (FSL-VBM) analysis (51,
52), and vertexwise cortical thickness and surface area measures calculated
using FreeSurfer (53). For the purpose of this study, we focused on compo-
nents showing statistical as well as clear practical significant relationship
with age (significance measured using effect magnitude as opposed to P

values). We tested for a difference in the peak of the curves between males
(n = 224) and females (n = 260) in age and height using bootstrap resam-
pling with replacement. We carried out voxel-by-voxel spatial cross-corre-
lation to quantify the overlap between the spatial map of the age-related
independent components and the maps of the structural abnormalities in
schizophrenia and Alzheimer’s disease, using the values of all voxels within
a brain mask. We assessed the significance of the spatial cross-correlation
using a Monte Carlo approach. Linear discriminant analysis and leave-one-
out cross-validation were carried out in R. Finally, we correlated the strength
of the age-related components with the behavioral measures in MAT-
LAB7.12, correcting for multiple comparisons across all components. More
details of the method are provided in SI Materials and Methods.
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1. Linked ICA.
Participants. In total, 484 right-handed healthy volunteers covering
much of the lifespan (age range from 8 to 85 y old; 220 males) were
selected from two research projects run by theResearch Group for
Lifespan Changes in Brain and Cognition at the University of Oslo
(“Neurocognitive Development” and “Cognition and Plasticity
through the Lifespan”). The study was approved by the Regional
Ethical Committee of Southern Norway.
The majority of participants was recruited through newspaper

advertisements. Written informed consent was obtained from all
participants ≥ 12 y of age and from parents for participants < 18 y
of age. Oral informed consent was given by participants < 12 y of
age. All subjects were fluent Norwegian speakers and screened
using a standardized health interview before inclusion in the
study. Exclusion criteria comprised history of self- or parent-
reported neurological or psychiatric conditions including stroke,
head injury, untreated hypertension, diabetes, use of psycho-
active drugs within the last 2 y, and concerns with cognitive
status—including memory function. All included MRI scans
were examined by a neuroradiologist and deemed free of sig-
nificant anomalies, including brain tumors and significant vas-
cular insults (stroke).
Imaging acquisition. All participants underwent the same imaging
protocol performed using a 12-channel head coil on a 1.5 T
Siemens Avanto Scanner (Siemens Medical Solutions) at Oslo
University Hospital, Rikshospitalet, with no hardware upgrades
and only minor software upgrades performed during the course
of the acquisition period (2006–2010). Whole-brain T1-weighted
images were acquired using magnetization prepared rapid gra-
dient echo (MPRAGE) with the following parameters: repeti-
tion time/echo time/inversion time (TR/TE/TI) = 2,400/3.61/
1,000 ms, flip angle of 8°, matrix = 192 × 192, field of view = 240
mm, voxel size of 1.25 × 1.25 × 1.2 mm3, and 160 sagittal slices.
To increase signal-to-noise ratio, the sequence was repeated
twice within a single session.
Imaging processing. T1-weighted images were processed using FSL-
VBM (1), an optimized voxel-based morphometry protocol (2)
using FMRIB Software Library (FSL) tools (3), in which a sym-
metric study-specific gray matter (GM) template was built from all
of the participants’ images (fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM;
FSL 4.1.7). For each subject, the input image for FSL-VBM was
an average of two repeated MPRAGE sequences. Briefly, the two
runs were preprocessed using FreeSurfer, including motion cor-
rection, averaging, and intensity nonuniformity correction. Prior to
the FSL-VBM processing, the volumes were masked by the full
brain-segmented volume output from FreeSurfer (surfer.nmr.mgh.
harvard.edu; FreeSurfer 5.0.0) (4), effectively excluding nonbrain
compartments. After nonlinearly registering all of the brain-
extracted, GM-segmented images onto the symmetric study-specific
GM template, the optimized FSL-VBM protocol involved a com-
pensation (or “modulation”) for the local contraction/enlargement
caused by the nonlinear component of the transformation: each
voxel of each registered GM image was multiplied by the Jacobian
of the warp field. The modulated registered GM-segmented images
were then smoothed with an isotropic Gaussian kernel with a σ of
4 mm (∼9.4 mm full width at half maximum).
In addition, brain structural information was also derived from two

other complementary types of GM image processing: vertexwise
cortical thickness and surface area measures calculated using Free-
Surfer by means of an automated surface reconstruction scheme (4).

Linked ICA.Linked ICA is an entirely data-driven approach that can
comodel multiple imaging modalities. Its main goal is to model the
imaging data as a set of interpretable features (independent
components), most of them characterizing biophysically plausible
modes of variability across all subjects’ images. Unlike in a prin-
cipal component analysis, the mixing matrix vectors of an ICA are
not forced to be orthogonal to each other, and thus can explain
common variance of variables external to the ICA, such as age.
Linked ICA is implemented as described in detail in earlier pa-
pers (5, 6) (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA). We ran
the linked ICA decomposition with 70 components to make it
comparable with the work by Smith et al. (7). Linked ICA is ca-
pable of eliminating unneeded components (using Bayesian model
order selection), but in all cases here, it kept all components.

2. Components Showing Relationship with Age. For the purpose of
this study,we focusedoncomponents showing relationshipwith age
(as assessed using a quadratic fit). There were eight such compo-
nents, but only two achieved statistical as well as clear practical
significance: IC1 and IC4 (significance measured using effect
magnitude as opposed to P values) (Fig. 1) (8). The first such
component (IC1) was the expected global dominant mode show-
ing monotonic decrease of the whole GM with age (except for the
medial temporal lobe). The weight for this IC1 component was
essentially composed of GM volume information (42%) and cor-
tical thickness (51%), and only verymodestly of cortical area (7%).
In contrast, the other component (IC4) showed a nonmonotonic
relationship with age, describing a symmetric inverted-U shape
with age with the strongest quadratic coefficient of all age-related
components. The weight for this IC4 component was largely car-
ried by GM volume information (53%) rather than thickness
(20%) or area (23%), and the latter two contributions did not
survive a threshold of Z > 4. In the opposite contrast (i.e., de-
creasing in early age and increasing in older age), cortical thickness
showed a strong effect in the anterior and ventral medial cingulate
cortex and the insula (nonoverlapping with volume effects) and
volume effects in the inferior temporal gyrus. This somewhat
surprising result is actually in line with what Salat et al. (9, 10) have
consistently observed with aging in the anterior cingulate cortex
and the inferior temporal gyrus, and might be related to a change
in intensity and contrast in these specific brain areas, for which the
histological mechanism are unclear.
The best fit for the relationship between this second component

IC4 and age was quadratic (P = 6 × 10−73) in the shape of an
inverted U with a peak at 40.2 y: y = −0.00182x2 + 0.14643x −
2.00964 (norm of residuals = 15.57; goodness of fit: sum of
squared errors (SSE) = 242.5; adjusted R2 = 0.50; MAT-
LAB7.12). A cubic fit showed no substantial improvement (norm
of residuals = 15.53). Quadratic models also provided a good fit
for the relationship between the second age-related component
IC4 and age for males and females taken separately (Fig. S4).
We tested for a difference in the peak of the curves between
males (n = 224) and females (n = 260) in age and height using
bootstrap resampling with replacement: we computed this dif-
ference based on separate quadratic fits for two populations of
same size (n = 224 and n = 260), both of them randomly sampled
from the entire healthy population of n = 484 (10,000 iterations).
The peak of the curve was significantly higher and later for fe-
males than males at 40.9 y for females compared with 38.8 y for
males (P < 10−4 and P = 4.5 × 10−3, respectively).
There was a nonmonotonic inverted-U relationship between

the two age-related components IC1 and IC4 that was fully driven
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by their strong relationships to age (as age explained 90% of the
variance of the dominant age-related component IC1 and 50% of
the variance of the second age-related component IC4); when the
modeled age-quadratic effect was removed from both compo-
nents, their residuals showed no relationship.

3. Comparison with Alzheimer’s Disease and Adolescent-Onset
Schizophrenia.
Participants. The Alzheimer’s disease (AD) cohort comprised 62
healthy controls and 58 AD patients (overall mean age = 73 ±
8 y). Subjects’ demographics, and inclusion/exclusion and di-
agnosis criteria, have been previously described (11). The 120
participants underwent the same imaging protocol on a 3 T
Allegra MR Imager (Siemens) with a standard quadrature
head coil and maximum 40 mT.m−1 gradient capability. This
imaging protocol included whole-brain T1-weighted scanning us-
ing MPRAGE with the following parameters: TR/TE/TI = 2,150/
3.49/1,000 ms, flip angle of 7°, field of view = 280 mm, voxel size of
1.1 mm isotropic, and 144 sagittal slices. Structural scans were
processed using the optimized FSL-VBM protocol (smoothing
with 3-mm σ-Gaussian kernel) (1), and t maps representing group
differences between patients and controls were generated.
For the adolescent-onset schizophrenia (AOS) comparison

included here, 12 healthy controls and 12 AOS patients were
considered (mean age at baseline = 16.0 ± 1.5 y). Subjects’ de-
mographics, inclusion/exclusion criteria, medication, imaging
protocol, and results have been previously described in detail
(12). Structural scans at baseline and a second time point (2.5 y
later) were reprocessed using the same FSL-VBM protocol as
for the 484 healthy participants and the 120 subjects of the AD
study (1). The modulated registered GM images from the second
time point were subtracted from those at baseline, and the re-
sulting images were smoothed with an isotropic Gaussian kernel
with a σ of 4 mm, and tmaps representing between-group (patients
vs. controls) differences in these changes over time were generated.
Spatial cross-correlation.We compared the spatial distribution of the
inverted-U component IC4 and the pattern of abnormalities in
AD and AOS using voxel-by-voxel spatial cross-correlation in
FSL 5.0.5 (3). For this analysis, we first used a nonlinear regis-
tration from the average GM map across all 120 elderly partic-
ipants of the AD cohort onto the average GM map across all 484
healthy participants and applied the warpfield to the map of
structural abnormalities in AD. We carried out the same pro-
cedure for the AOS cohort. The reason for this step is that, al-
though all images are in the Montreal Neurological Institute
(MNI) space, each cohort will be in its own study-specific stan-
dard space, as is required by the optimized VBM protocol. As

a consequence, the standard space template for the AOS cohort
will, for instance, display much smaller ventricles than the one
for the AD cohort. Then, we masked each map with the MNI152
brain mask and correlated all voxels of the inverted-U compo-
nent (Z > 0) with the statistical map of regions showing lower
volume in AD compared with their matched controls (t > 0), and
those regions showing late development in AOS compared with
matched healthy adolescents (t > 0).
To assess the significance of the spatial cross-correlation be-

tween the spatial distribution of the inverted-U component IC4 and
maps of both AD and AOS structural abnormalities, we randomly
generated 1,000 Gaussian noise images that we smoothed with the
corresponding estimated smoothness for AD and AOS differences
with their respective controls. We then calculated the 1,000 cross-
correlations between each of these noise maps and the network
corresponding to the inverted-U component and compared the
strength of our observed correlations with this empirically gener-
ated null distribution.
Prediction of AOS and AD. We spatially regressed the GM network
corresponding to the inverted-U component IC4 (Z > 0) into the
GM volume images of each AD patient and matched control, as
well as each AOS patient and matched control. We then used this
single measure for each subject to calculate the specificity, sen-
sitivity, and accuracy of prediction of the two clinical disorders
using a linear discriminant analysis and leave-one-out cross-vali-
dation in datamind (R) (13).
Post hoc correlation with cognitive measures in healthy subjects. Finally,
we wanted to investigate post hoc the relationship between the
strength of the inverted-U component IC4 and two cognitive
measures that are hallmarks of AD and AOS: episodic memory (as
assessed with the CVLT long-delay free recall) and the perfor-
mance (fluid) and verbal (crystallized) intelligence raw scores
(block design and vocabulary; WASI) (Figs. 4 and 5). For verbal
(crystallized) intelligence, which is known to plateau, we also con-
sidered only values for the 249 of 484 healthy participants who were
under 40 y old, the peak age for the inverted-U component (Fig.
S5). We further assessed if any of these measures still correlated
significantly with the inverted-U component strength after re-
gressing out the linear and quadratic effect of age using the linear
model in R. All of the correlations survived correction for multiple
comparisons across all components and were still significant after
correction for linear effect of age, but not for a quadratic effect of
age, as lifespan trajectories for fluid intelligence, episodic memory,
and inverted-U component were very similar (Fig. S6). For com-
pleteness, we compared the correlation values between these
cognitive measures and all age-related components (Fig. S2).
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Fig. S1. AD-related abnormalities, the spatial network of the inverted-U component, and AOS-related abnormalities spatially correspond to one another.
(Left) Axial and (Right) sagittal slices showing AD-related abnormalities (blue; thresholded for better visualization at P < 0.001), the spatial network of the
inverted-U component IC4 (orange; Z > 4), and AOS-related abnormalities (green; P < 0.05). Main differences are the lack of extensive structural abnormalities
in the medial temporal lobe as well as some apparent asymmetry in AOS (red ovals).
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Fig. S2. Characteristics of age-related components. (Top) For each of eight components that were significantly related to age (quadratic fit), we measured
across all 484 healthy subjects (i) the percentage of variance of GM volume (“structure”) that the component explained and (ii) the percentage of variance
within that component explained by age (Fig. 1). Of note, although the inverted-U component (IC4) accounted for only 3% of the variance of GM volume
(structure), 50% of the variance within the IC4 component was associated with age. (Middle) Spatial cross-correlations between the GM volume map for each
age-related component and AD/AOS structural abnormalities: both IC1 (the global component mostly representing the standard deviation of GM volume
across all of the subjects) and IC4 (the age-related inverted-U component mostly representing transmodal areas) were highly correlated with AD and AOS
spatial distribution of abnormalities. (Bottom) Correlations with fluid intelligence (block design; not age-corrected) and episodic memory (CVLT long-delay
recall; not age-corrected); across the lifespan and all healthy participants, IC4 had the strongest correlations with both cognitive measures.
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Fig. S3. Binary overlaps show spatial commonality between the pattern of the inverted-U component and the pattern of abnormalities in AD and AOS. In
green is the overlap between the inverted-U component IC4 and AOS, in yellow is the “disease” overlap between AD and AOS, and in blue is the overlap
between the inverted-U component IC4 and AD (arbitrary threshold at P < 0.05). In red is the overlap between all three patterns. The most notable differences
are the lack of extensive abnormalities in the amygdalo-hippocampal complex in AOS (see also the main text). Inv U, inverted-U.

Fig. S4. Inverted-U component load differs between females and males. (Left) Inverted-U component IC4 load for all females (turquoise; n = 260) and (Center)
all males (magenta; n = 224) plotted against age. (Right) A quadratic model provided an excellent fit for the relationship between the component load and age
for females (P = 3.5 × 10−44) and males (P = 1.3 × 10−33) taken separately, with a higher, slightly later peak for the females than for the males (black arrows; P =
4.5 × 10−3): females yF = −0.00195xF2 + 0.15919xF − 2.0271; males yM = −0.00154xM2 + 0.11936xM − 1.8158. a.u., arbitrary unit.

Douaud et al. www.pnas.org/cgi/content/short/1410378111 5 of 8

www.pnas.org/cgi/content/short/1410378111


Fig. S5. Inverted-U component load correlates with crystallized intelligence scores in healthy subjects. Crystallized intelligence, in contrast to episodic memory
and fluid intelligence, does not peak with age, but instead reaches a plateau. Estimates for this age plateau vary depending on whether they are made, for
instance, from cross-sectional or longitudinal data (similar to what has been observed for age peaks in fluid intelligence and episodic memory) (1–3), usually
from 25–35 to 45–55 y. We therefore looked at the correlation between the inverted-U component IC4 load and one measure of crystallized intelligence
(vocabulary; WASI) not only across all participants, but also for participants under 40 y old, which corresponds to the peak of the inverted U. (Left) For all healthy
participants (n = 481; r = 0.21; P = 2.6 × 10−6). (Right) Stronger correlation was seen for all healthy participants under 40 y old (n = 249; r = 0.52; P = 4.9 × 10−19).
a.u., arbitrary unit.
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Fig. S6. Similar lifespan trajectories for the inverted-U component, long-term memory, and fluid and crystallized intelligence (<40 y). There were similar
inverted-U quadratic relationships between age and inverted-U component IC4 (peaking at 40 y), episodic memory scores (peaking at 32 y), and block design
scores (peaking at 38 y). Age trajectory of vocabulary scores before 40 y (when it crystallizes to a plateau) also matched that of the inverted-U component for
the same age range (Fig. S5).
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Table S1. MNI coordinates of local maxima for the GM network corresponding to the inverted-U
component (Z > 4)

MNI (voxel)

Cortical region [Brodmann Area (BA)] Side x y z Z value

Medial temporal areas
Amygdalohippocampal complex Left 59 62 26 8.74
Amygdalohippocampal complex Right 32 61 27 8.91
Dentate gyrus Left 58 47 32 8.04

Other temporal areas
Posterior superior temporal sulcus Left 69 48 35 6.24
Posterior superior temporal sulcus Right 21 48 35 6.66

Temporoparietal areas
Supramarginal/angular gyrus Left 68 39 44 9.78
Supramarginal/angular gyrus Right 21 41 42 8.17

Parietal areas
Intraparietal sulcus (anterior) Right 28 38 56 13.89
Intraparietal sulcus (anterior) Left 64 46 57 12.12
Intraparietal sulcus (posterior) Left 58 31 54 12.12
Intraparietal sulcus (posterior) Right 32 31 54 10.33

Other parietal areas
Posterior cingulate cortex Right 40 40 53 7.73
Posterior cingulate cortex Left 50 39 53 7.56
Parieto-occipital fissure (precuneus) Left 53 29 51 8.68
Parieto-occipital fissure (precuneus) Right 37 29 49 8.16

Opercular/insular areas
Parietal operculum Left 65 50 44 13.45
Parietal operculum Right 26 53 44 9.17
Frontal operculum/anterior insula Right 28 77 38 5.10

Prefrontal areas
Middle frontal gyrus (BA9) Right 26 67 52 10.28
Middle frontal gyrus (BA9) Left 64 66 52 9.19
Middle frontal gyrus (BA46) Left 65 77 46 6.56
Middle frontal gyrus (BA46) Right 25 78 45 4.99
Superior frontal gyrus (BA8) Right 33 71 59 7.47
Superior frontal gyrus (BA8) Left 57 72 58 7.54
Superior frontal gyrus (BA6) Right 32 60 61 8.32
Superior frontal gyrus (BA6) Left 59 60 60 7.93
Medial superior frontal gyrus (BA6) — 45 57 62 6.44

Other frontal areas
Precentral gyrus (BA4) Left 65 55 58 9.85
Precentral gyrus (BA4) Right 26 54 58 9.46

Occipital areas
Calcarine fissure Left 52 14 34 9.24
Lateral occipital cortex Left 66 30 38 6.57
Lateral occipital cortex Right 23 33 36 5.03
Lingual gyrus — 45 24 37 6.62
Lingual gyrus Right 40 34 38 6.17

Temporo-occipital areas
Fusiform gyrus Right 28 30 29 9.12
Fusiform gyrus Left 61 30 30 5.72

Cerebellum
Crus I Right 23 25 21 5.15
Crus I Left 67 25 21 4.14
I–IV — 43 35 32 7.85

Subcortical areas
Ventral striatum Left 54 69 33 9.79
Ventral striatum Right 35 68 32 9.18
Thalamus — 45 57 41 7.79

Regions were identified based on the Harvard–Oxford in vivo probabilistic atlas, the Jülich cytoarchitectionic
probabilistic atlas, and the probabilistic cerebellar atlas available in FSL.
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