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Characterization and Propagation of Uncertainty in
Diffusion-Weighted MR Imaging

T.E.J. Behrens,"?* M.W. Woolrich,"? M. Jenkinson,' H. Johansen-Berg," R.G. Nunes,’
S. Clare," P.M. Matthews,' J.M. Brady,2 and S.M. Smith’

A fully probabilistic framework is presented for estimating local
probability density functions on parameters of interest in a
model of diffusion. This technique is applied to the estimation of
parameters in the diffusion tensor model, and also to a simple
partial volume model of diffusion. In both cases the parameters
of interest include parameters defining local fiber direction. A
technique is then presented for using these density functions to
estimate global connectivity (i.e., the probability of the exis-
tence of a connection through the data field, between any two
distant points), allowing for the quantification of belief in trac-
tography results. This technique is then applied to the estima-
tion of the cortical connectivity of the human thalamus. The
resulting connectivity distributions correspond well with pre-
dictions from invasive tracer methods in nonhuman primate.
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Uncertainty and its representation have an important role
to play in any situation where the goal is to infer useful
information from noisy data. In diffusion-weighted MRI
(DW-MRI) scientists attempt to infer information about, for
example, diffusion anisotropy or underlying fiber tract
direction, by fitting models of the diffusion and measure-
ment processes to DW-MRI data (e.g., Refs. 1,2). In this
scheme there is uncertainty caused both by the noise and
artifacts present in any MR scan, but also by the incom-
plete modeling of the diffusion signal. That is, the true
diffusion signal is more complicated than we choose to
model. This additional complexity in the diffusion signal
appears as residuals when we fit a simple model to the
data, causing additional uncertainty in the model param-
eters. All of the uncertainty in these parameters may be
represented in the form of probability density functions
(pdfs). This article is essentially divided into two parts,
dealing separately with uncertainty at the local and global
levels. In the first part, we describe a technique for esti-
mating the pdfs on all parameters in any local model of
diffusion. We will show results derived from two simple
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models of the diffusion process within a voxel: The diffu-
sion tensor model which assumes a local 3D Gaussian
diffusion profile, and a simple partial volume model of
local diffusion, which assumes that a fraction of diffusion
is along a single dominant direction, and that the remain-
der is isotropic. We will then make suggestions for the
extension to more complete models of the diffusion pro-
cess which are able to account for one, or more, distribu-
tion of fiber directions within the voxel. In all of these
models, the use of Bayesian techniques allows for the
application of prior constraints on parameters in the
model where such constraints are sensible. For example,
in the fitting of the diffusion tensor model, the eigenvalues
of the diffusion tensor are constrained to be positive.
The distributions on parameters in a diffusion model are
of great significance when making inference on the basis of
these parameters. Inference may be at a group level; for
example, there have been studies showing reduced anisot-
ropy in groups of multiple sclerosis patients, in compari-
son with groups of normal subjects (e.g., Ref. 3). However,
inference may also be within a single subject. There have
been many recent articles (e.g., Refs. 4,5,6) describing tech-
niques for using parameters from a diffusion tensor fit to
follow major white matter pathways in the brain. How-
ever, none of these techniques attempt to quantify the
uncertainty in the resulting white matter connections. The
output of these algorithms is a set of nodes describing the
maximum likelihood pathway through the DTI data, with
no measure of confidence on the location of this pathway.
The lack of this information makes interpretation of the
output pathways difficult, and also makes it hard to devise
strategies for tracing reliably in uncertain areas. For both of
these reasons, streamlining algorithms to date have chosen
not to trace pathways through areas of low diffusion an-
isotropy (e.g., Refs. 5,7). Diffusion anisotropy tends to be
low in areas of high uncertainty in fiber direction (al-
though the converse is not necessarily true (8)), and there-
fore, by tracing fibers only when anisotropy is high,
streamlining algorithms have tended to generate pathways
which (if they had been calculated) would have had nar-
row confidence bounds on them. This knowledge means
that reconstructed pathways are often interpretable as ma-
jor fiber tracts in the brain (9), but places limits on areas
where it is possible to create them. In the second part of
this article, we give the mathematical formulation for de-
riving spatial PDF on connectivity between point A and
every other point in the data field given the local pdfs. This
PDF is an explicit representation of the confidence regions
for pathways in the data. We go on to present a sampling
technique to generate this PDF in a computationally effi-
cient manner and describe and discuss technical details,
such as data interpolation, required in any fiber-tracing

1077



1078

algorithm. We present resulting connectivity PDFs from
seed voxels in the thalamus, a deep gray matter structure
with relatively low diffusion anisotropy. We show that
connectivity distributions estimated from diffusion imag-
ing data in human correspond well with predictions from
sacrificial tracer studies in primate. Further results from
this study appear with detailed discussion and interpreta-
tion in Ref. 8.

An important point to note is that, throughout this arti-
cle, the estimated probability distributions are pdfs on
parameters in a model. This is to be contrasted with the
Gaussian distribution described by the diffusion tensor fit
(10), and with more recent work (e.g., Ref. 11) which have
attempted to recreate the diffusion spectrum as a probabil-
ity distribution on the displacement, r,,; — r, of a parti-
cle within initial location r, in the voxel after a diffusion
time t,. There are crucial differences here, both conceptu-
ally and practically.

DENSITIES, BAYES, AND MCMC

When fitting a parametrized model to data, there are two
general approaches which may be taken. The first is to look
for the set of parameters (w) which best fit the data. This is
called a point estimate of the parameters. A special case of
this is Maximum Likelihood estimation, where we look for
the set of parameters which maximize the probability of
seeing this realization of the data given the model and its
parameters:

oy, = arg max P(Y|o, M) [1]
a

where Y is the data and M is the model.

The second approach is to associate a pdf with the param-
eters. In the Bayesian framework, this distribution is called
the posterior distribution on the parameters given the data:

? (Yo, M)P(w|M)
P(Y|M) '

P(o]Y, M) = (2]

This posterior density allows us to ask the question of any
hypervolume V" in parameter space (), “What is our belief
given the measured data that the true value of  is in ¥'?”.
In the one-dimensional case, this question becomes, for
any (o, w,) “What is our belief that w lies between o, and
,?”. These questions, and their answers, represent the
uncertainty we have in the values of the parameters w.

Unfortunately, calculating this pdfis seldom straightfor-
ward. The denominator in Eq. [2] is:

P(Y|M) —f P(Y|w, M)P(o|M)dw [3]
Q

an integral which is often not tractable analytically. To
make matters worse, this joint posterior pdf on all param-
eters is often not the distribution which we are most in-
terested in. We are often interested in the posterior pdf on
a single parameter or an interesting subset of parameters.
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Obtaining these marginal distributions again involves per-
forming large integrals,

P(o]|Y, M) = f P(w|Y, M)do _, [4]

Q-1

where o, are the parameters of interest and w_; are all
other parameters. Again, these integrals are seldom tracta-
ble analytically.

One solution to this problem is to draw samples in
parameter space from the joint posterior distribution, im-
plicitly performing the integrals numerically. For exam-
ple, we may repetitively choose random sets of parameter
values and choose to accept or reject these samples accord-
ing to a criterion based on the value of the numerator in Eq.
[2]. It can be shown (e.g., Ref. 12) that a correct choice of
this criterion will result in the accepted samples being
distributed according to the joint posterior pdf (Eq. [2]).
Schemes such as this are rejection sampling and importance
sampling, which generate independent samples from the
posterior. Any marginal distributions may then be generated
by examining the samples from only the parameters of inter-
est. However, these kinds of sampling schemes tend to be
painfully slow, particularly in high-dimensional parameter
spaces, as samples are proposed at random, and thus each
has a very small chance of being accepted.

Markov Chain MonteCarlo (MCMC) (e.g., Refs. 12,13) is
a sampling technique which addresses this problem by
proposing samples preferentially in areas of high probabil-
ity. Samples drawn from the posterior are no longer inde-
pendent of one another, but the high probability of accept-
ing samples allows for many samples to be drawn and, in
many cases, for the posterior pdf to be built in a relatively
short period of time.

LOCAL PARAMETER ESTIMATION

In this section we present three models of the local diffu-
sion process. The first is the familiar diffusion tensor
model (10), which models the local diffusion as a 3D
Gaussian. Then we choose two different models which
attempt to model underlying fiber structure in a voxel and,
from this, predict the diffusion-weighted signal. The first
of these is a simple partial volume model allowing for a
single fiber direction mixed with an isotropically diffusing
compartment in a voxel. The second is a parametrized
model of the transfer function between a distribution of
fiber orientations in a voxel and the measured diffusion-
weighted signal. We infer from the first two of these mod-
els using MCMC to estimate the posterior distributions on
parameters of interest. We present detailed results from a
single white matter voxel showing recovered distributions
from both models. We go on to present a validation study,
comparing distributions throughout a slice with those re-
covered from empirical measurements of uncertainty (14).

Local Parameter Estimation: Theory
Diffusion Tensor Model

The diffusion tensor has often been used to model local
diffusion within a voxel (e.g., Refs. 10,15,16). The assump-
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tion made is that local diffusion may be characterized with
a 3D Gaussian distribution (10), whose covariance matrix
is proportional to the diffusion tensor, D. The resulting
diffusion-weighted signal, p; along a gradient direction r;,
with b-value b, is modeled as:

Wi = SoeXP(_biriTDri) [5]

where S, is the signal with no diffusion gradients applied.
D, the diffusion tensor is:

Dxx DX

y D X7
D,
D

7z

D= . [6]

Dy, Dy,
D, D,,
When performing point estimation of the parameters in the
diffusion tensor model, it has been convenient to choose
the free parameters in the model to be the six independent
elements of the tensor, D, — D,,, and the signal strength
when no diffusion gradients are applied, S,. This param-
etrization allows estimation to take the form of a simple
least-squares fit to the log data. When sampling, however,
our choice of parametrization is far less constrained by our
estimation technique. The parameters of real interest in
the tensor are the three eigenvalues and the three angles
defining the shape and orientation of the tensor. By choos-
ing these as the free parametres in the model, not only do
we give ourselves immediate access to the posterior pdfs
on the parameters of real interest, but we also allow our-
selves the freedom to apply constraints or add information
exactly where we would like to. As a simple example, as
will be seen later, a sensible choice of prior distribution on
the eigenvalues makes it easy to constrain them to be
positive. So the diffusion tensor is now parametrized as
follows:

D = VAV' [7]
where
N O O
A=| 0 X, O [8]
0 0 N\

and V rotates A to (0, ¢, ), such that the tensor is first
rotated so that its principal eigenvector aligns with (6, ¢)
in spherical polar coordinates, and then rotated by s
around its principal eigenvector.

The noise is modeled separately for each voxel as inde-
pendently identically distributed (iid) Gaussian, with a
mean of zero and standard deviation (SD) across acquisi-
tions of o. The probability of seeing the data at each voxel
Y given the model, M, and any realization of parameters
set, w = (0, &, ¥, Ny, Ay, Ny, Sy, 0) may now be written as:

"This may seem an odd way to span the angular space. The reason we chose
to define these angles is that it allows us to sample directly from the principal
diffusion direction (6, &).
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P (Y|o, M) = [[ 2(yilo, M)

i=1

gP(Yi|007 Al) -~ N(“’i: U) [9]

where n is the number of acquisitions, and y; and p; are

the measured and predicted values of the i'" acquisition,

respectively. (Note that throughout this article i will be
used to index acquisition number.)

w; = Seexp — b/ Dr; [10]

Thus, the model at each voxel has eight free parameters,

each of which is subject to a prior distribution. Priors are

chosen to be noninformative, with the exception of ensur-
ing positivity where sensible:*

P(0, &, ) = sin(6)
P(Sp) ~ U0, )

P(N) =P(N,) = P(Ny) ~T(ay, by

@(%) ~T(a,, b,). [11]

Parameters a and b in the Gamma distributions are chosen
to give these priors a suitably high variance such that they
have little effect on the posterior distributions except for
where we ensure positivity. Note that the noninformative
prior in angle space is proportional to sin(6), ensuring that
every elemental area on the surface of the sphere, 8A =
sin(0)368¢ has the same prior probability.

Simple Partial Volume Model

Here we take a slightly different approach to modeling in
DWMRI. Instead of modeling the diffusion shape directly,
we attempt to build a model of the underlying fiber struc-
ture which predicts the diffusion shape, and hence the MR
measurements. The simplest such model of fiber structure
is to assume that all fibers pass through a voxel in the same
direction. Assuming no diffusion—diffusion exchange, this
leads to a simple two-compartment partial volume model.
The first compartment models diffusion in and around the
axons, with diffusion only in the fiber direction. The sec-
ond models the diffusion of free water in the voxel as
isotropic. One consequence of this model is that the dif-
fusivity (and hence the restriction to water diffusion) in all
directions perpendicular to the fiber axis is constrained to
be the same. This is very different from the diffusion
tensor model, where any ellipsoidal diffusion shape may
be modeled.
The predicted diffusion signal is:

w; = So((1 — flexp(—b;d) + fexp(—b;drfRAR'T)) [12]

2A description of the I distribution may be found in the Appendix.
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where d is the diffusivity, b; and r; are the b-value and
gradient direction associated with the i™ acquisition, fand
RART are the fraction of signal contributed by, and aniso-
tropic diffusion tensor along, the fiber direction (6, ¢). That
is, A is fixed as:

) [13]
and R rotates A to (0, ¢).

Again, noise is modeled as iid Gaussian:

(=R
o o o
o oo

>
Il
—

o, M) =[] 2@y

i=1

P(Y

('O?M)

@(Yi|w$ M) -~ N(“’jﬁ 0') [14]
where the parameter set  now has six free parameters (o,
Sy, d, f, 6, ). Each of these parameters is subject to a prior
distribution, which are chosen to be noninformative ex-
cept for where we ensure positivity:

P(0, ¢) « sin(0)
P(Se) ~ U0, =)
P(f) ~au(o, 1)

P(d) ~TI'(ag by

@(%) ~T(ay, by). [15]

Increasing the Complexity—A Distribution of Fibers?

In the partial volume model presented above, only a single
fiber orientation is modeled in each voxel. In fact, there
will be a distribution, H(8, ¢), of fiber orientations in the
voxel. In order to estimate this distribution we must build
a model which, given this distribution, could predict the
diffusion-weighted MR measurements.

Such a model clearly requires some assumptions. We
start by assuming that each subvoxel has only one fiber
direction through it, that the MR signal from the voxel is
the sum of the signal from arbitrarily small subvoxels, and
that the signal from each subvoxel behaves as described by
Eq. [12]. (Note that this final assumption is a strong as-
sumption to make, but it is explicit in the model. Any
other model of the local diffusion characteristics of a sin-
gle fiber orientation may be used as a replacement.)

Wtotal = E ij [1 6]

JjEsub—voxels

where w,,,.; is the vector of MR signal from the voxel at
each gradient direction and strength, and p.; is the same
vector for each subvoxel.
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If we now consider, instead of the individual subvoxels,
the set ®® of major directions (8, ¢) in these subvoxels
(note the discretization of ®®), then Eq. [16] is identically
equivalent to (see Eq. [12]):

S
> (E N L1 = fexp(=bid)

0,0)E0D \ jEVos

+ ﬁexp(—bjd,-riTR%ARgd)ri)]) [17]

where V,, is the set of all voxels whose principal fiber
direction is (0, ¢) and N is the number of subvoxels. This
equation, although fearsome at first sight, is actually very
straightforward. The first part of the argument to the sum-
mation (on the top line) represents the signal due to all of
the isotropic compartments, and the second part repre-
sents the signal due to all of the fiber compartments. If we
now further assume that S, (the signal with no diffusion
gradients applied) and d (the diffusivity) are constant
across the voxel, then the inner summation (over voxels
which have the same principal direction) may be replaced
by a constant for the isotropic compartment, and in the
anisotropic compartments, by the distribution function
H(6, ¢) defined earlier. With a little more manipulation
and by letting the subvoxel size tend to zero, it is easy to
arrive at:

g—;= (1 — Pexp(=bd)

2w g
+ff f H(9, d)exp(—b;dr/Ry, AR, r;sin(0)dodd  [18]
0

0

where 1 — f is now the proportion of the whole voxel
showing isotropic diffusion. Note that the integral is over
sin(60)d6dd in order to maintain elemental area over the
sphere. Finally, if we write the gradient direction r; in
spherical polar coordinates r; = [sin a,cos B; sin a;sin
B; cos a;l, and define vy; as the angle between gradient
direction, (a;, B;), and fiber direction (0;, ¢;), then the
exponent inside the integral reduces dramatically. We may
now write:

M“S%';Bi): (1 = flexp(—b;d)

+fj ’ J’11 H(0, db)exp[—b;d cos*y;]sin(0)dodd. [19]

This equation reveals a great deal about the diffusion mea-
surement process. The real “signal” of interest is H(6, ¢),
the distribution of fibers within the voxel. When we mea-
sure the diffusion profile of this signal we are measuring a
version of this signal which is smoothed in angular space,
with a kernel, predicted by this model, of exp(—bd cos?y).
We would like to deconvolve the effect of the measure-
ment process from the signal. However, we leave the de-
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FIG. 1. Samples from marginal posterior distributions of the diffusion tensor model in a white matter voxel. a: Samples from the marginal
posterior distribution on 6. b: Samples from the marginal posterior distribution on ¢. c: (a) and (b) plotted around a sphere, representing

the marginal posterior distribution on principal diffusion direction.

tails of this estimation process, and validation thereof, as
future work.

Local Parameter Estimation: Methods

Data Acquisition

DT-MRI datasets were acquired on a single, healthy vol-
unteer. The images were obtained on a 3.0 T Varian Inova
scanner using a diffusion-weighted single-shot EPI se-
quence. To minimize eddy currents, a doubly refocused
spin-echo sequence was implemented (17). A birdcage RF
head coil was used for both pulse transmission and signal
detection. The diffusion gradients achieved a maximum
gradient strength of 22 mTm ™", Each dataset consisted of
three nondiffusion-weighted and 60 diffusion-weighted
images acquired with a b-value of 1000 smm~?. The dif-
fusion gradients were uniformly distributed through space
using the optimized scheme proposed by Jones et al. (18).
Each set of images contained 42 contiguous slices with a
2.5 mm thickness. A half k-space acquisition was per-
formed with a matrix size set to 62 X 96 and a field of view
of 240 X 240 mm?® The images were interpolated to
achieve a matrix size of 128 X 128 and a final resolution of
1.875 X 1.875 X 2.5 mm?®. To minimize motion artifacts,
peripheral grating was used such that triggering occurred
on every cardiac cycle. The echo time was set to 106 ms
while the effective repetition time was 14 R-R intervals.
The total scan time for each dataset was approximately
15 min, depending on heart rate.

-IIII||‘|IIII- b --II|||“|II---
i 28 90 92 94 96 348 350 352 354 356 358

F 98 46

Estimation

MCMC estimation was performed for the diffusion tensor
model and for the simple partial volume model. In both
cases parameters were initialized with a least-squares dif-
fusion tensor fit. The Markov Chains were then jumped
500 times without sampling as a “burnin” (12), followed
by 2000 times, sampling every second jump, to give
1000 samples. A single jump of the parameter set consisted
of independent jumps of each parameter. In both models
samples were drawn from the precision (1/0*) with a Gibbs
sampler and from all other parameters with Metropolis
Hastings samplers. Proposal distributions for Metropolis
Hastings parameters were zero mean Gaussians with SDs
tuned adaptively to give a jump acceptance rate of 0.5. The
full conditional distributions for the Gibbs sampling of the
precision in both models are given in the Appendix. Com-
putation time for diffusion data with 63 acquisitions is
approximately 0.3 sec per voxel on a Pentium IV 2 GHz.
Voxels are processed independently, so computation is
easily parallelized.

Local Parameter Estimation: Results

Example Distributions From a Single Voxel

Figure 1la,b shows samples from the marginal posterior
distributions on 6 and ¢ from the diffusion tensor model.
The voxel was chosen from the splenium of the corpus
callosum. Figure 1c shows 1a,b plotted as a joint histogram

ss €

FIG. 2. Samples from marginal posterior distributions of the partial volume model in a white matter voxel. a: Samples from the marginal
posterior distribution on 6. b: Samples from the marginal posterior distribution on ¢. c: (a) and (b) plotted around a sphere, representing

the marginal posterior distribution on principal diffusion direction.
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FIG. 3. 95% uncertainty values (in degrees), predicted from the diffusion tensor model (a), the partial volume model (b), and Jones’ empirical
method (c). d: A mask of the corpus callosum used in some calculations.

around the surface of a sphere. This is then the joint
marginal posterior distribution of 6 and ¢ or the marginal
posterior distribution of principal diffusion direction
(PDD). Note how narrow this distribution is. This repre-
sents a high confidence in our calculated PDD, which is as
predicted in an area of dense white matter such as the
corpus callosum. Figure 2a,b shows samples from the mar-
ginal posterior distributions on 6 and ¢ from the simple
partial volume model. The same voxel was chosen as in
Fig. 1. Again, Fig. 2c shows 2a,b plotted as a joint histo-
gram around the surface of a sphere.

Validation: Comparison With Empirical Measurements

The posterior pdfs on the parameter estimates, in either of
the above models, characterize our uncertainty in these
parameters. In Ref. 14, Jones proposes an empirical
method for estimating this uncertainty. Following this
method, we acquired three repeats of diffusion data with
63 gradient directions and bootstrapped, to create
1000 datasets of different combinations of these repeats.
We fit a diffusion tensor at each voxel in each of these new
datasets and calculated the uncertainty between the

FIG. 4. Connectivity distributions and connectivity based segmentation from seed points in the visual system and thalamus.
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Table 1
Fractional Deviation Values Between the Three Methods in the Whole Brain (Left) and Within the Corpus Callosum (Right)
A B C A B C
A 0.10 (0.08) 0.15(0.11) A 0.04 (0.03) 0.13 (0.11)
B 0.10 (0.08) 0.20 (0.14) B 0.04 (0.03) 0.12 (0.09)
C 0.15(0.11) 0.20 (0.14) C 0.13 (0.11) 0.12 (0.09)

Inside each cell is the mean with the median in parentheses.

1000 principal eigenvectors at each voxel. This uncer-
tainty is measured as the size of the 95% confidence angle
from the mean direction.

Using only one of these 1000 datasets we drew
1000 samples from the posterior pdfon principal diffusion
direction at each voxel under both the diffusion tensor and
simple partial volume models. From these samples we
computed the same 95% angle from the mean direction.

Figure 3 shows these 95% angles for the diffusion tensor
model in Fig. 3a and the partial volume model in Fig. 3b;
Fig. 3c shows the same angles predicted by Jones’ method.

There are various factors to consider when comparing
these results. The first is that the empirical method in Fig.
3c is not necessarily “ground truth.” It has errors associ-
ated with it due to subject motion and interpolation re-
lated effects, but also, more subtly, due to the dependence
within the bootstrapped datasets. This is likely to cause an
underestimate in the measured uncertainty. The second
factor is the difference in the two models. Figure 3a,c
predict uncertainty levels in the principal eigenvector of a
diffusion tensor model. Figure 3b predicts the same thing
for the less flexible partial volume model. In areas of
complex fiber structure, the partial volume model, which
has only one fiber direction available to it, is forced to
represent this structure as uncertainty in the single direc-
tion (this will turn out to be extremely useful when trying
to do tractography, as will be seen in later sections). In
contrast, the diffusion tensor model will tend to account
for complex fiber structure in a voxel not only with uncer-
tainty in the principal fiber direction, but also with a
change in the diffusion profile (i.e., a change in the relative
sizes of the three eigenvalues). For this reason we would
predict that, in regions of complex fiber structure, the
partial volume model would show more uncertainty in
principal diffusion direction than the diffusion tensor
model. We would expect the two models to predict very
similar uncertainties in regions of high fiber co-alignment,
such as in the corpus callosum (Fig. 3d).

The mean 95% confidence angles within the brain for
the three methods are: diffusion tensor model and MCMC
(a) 35.4°, partial volume model and MCMC (b) 36.0°, and
diffusion tensor model with empirical measurements
(Jones) (c) 33.9°. We further compare any two of these
three methods by computing their absolute difference as a
fraction of their mean value at every voxel, defining frac-
tional deviation (Table 1):

FD(A, B) = FD(B, A) = A = B
(A, B) = FD(B, )—me-

Predictions of uncertainty by MCMC on the two models
are within 10% of each other throughout the brain and

within 5% in the callosal mask, showing, as predicted,
very similar uncertainty where fibers are highly co-
aligned, and slight differences in uncertainty in other ar-
eas. With the diffusion tensor model, uncertainties pre-
dicted by MCMC are within 15% of those predicted by the
empirical method when considering the whole brain and
13% when only considering the corpus callosum. These
differences are small and may be due to errors in either or
both approaches.

GLOBAL CONNECTIVITY ESTIMATION

Global Connectivity Estimation: Theory

In the previous section we described techniques for esti-
mating, at each voxel, probability distributions on every
parameter in the chosen model of diffusion. In this section
we use these local pdfs from the simple partial volume to
infer on a model of global connectivity. The reason we
chose this model is explained in detail in the previous
section. We wish to maximize the chances that complex
fiber structure will be represented by uncertainty in prin-
cipal direction. We now require a model to take us from
the local parameters in this model to parameters describ-
ing global connectivity. Note that, throughout the remain-
der of this article, subscript x refers to “every voxel in the
brain.” Hence, (0, ¢), refers to the complete set of principal
diffusion directions.

Consider the case where the values of the local param-
eters are known with no uncertainty. What do they tell us
about anatomical connectivity between voxels in the
brain? In the case where our local model describes only a
single fiber direction passing through the voxel, this global
model can only take one form:

1 If there is a connecting
path through (6, ¢),
0 otherwise.

P(3A — Bl6, d)) =
[20]

Where #(JA — B|(0, ¢),) is the probability of a con-
nection existing between points A and B, given knowledge
of local fiber direction.

In order to solve this equation we may simply start a
connected path from a seed point, A, and follow local fiber
direction until a stopping criterion is met. If B lies on this
path we may say that a connection exists between A and B.
This procedure is at the heart of all “streamlining” algo-
rithms (e.g., Refs. 5,6,19), which choose (8, $), to be the
principal eigendirection of the estimated diffusion tensor
at each voxel.
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However, in the case where there is uncertainty associ-
ated with (8, ¢),, we would like to compute the probability
of a connection existing given the data, Y,, which is
known. That is, we would like to compute ?(JA — B|Y,).
In order to calculate this pdf we would have to perform the
following integrations:

P(IA —>B|Y)=JHJ}...'[Zﬂfﬂ9’(3A —

B|(8, $))P((8, d)|Y). .. PP((6, $),|Y)
do,do,, ... do,do,,.

[21]

That is, for each possible value of fiber direction at every
voxel (0, ¢),, we must incorporate the probability of con-
nection given this (8, ¢),, and also the probability of this (6,
¢), given the acquired MR data. This process is known as
marginalization (see, e.g., Ref. 20).

It can be seen from Eq. [21] that (3 A — B|Y) reduces
to ?(3A — BJ(8, ¢),) when the local pdfs on fiber direc-
tion P((6, ¢),) are delta functions. That is, when there is no
uncertainty in the local fiber direction, Eq. [21] reduces to
the streamlining (maximum likelihood) solution. How-
ever, when local fiber direction is uncertain, #(3A — B|Y)
will be nonzero for some B not on the maximum likelihood
streamlines. That is, the global connectivity pattern from A
will spread to incorporate the known uncertainty in local
fiber direction.

However, even in the discrete data case, Eq. [21] repre-
sents a v dimensional (where v is the number of voxels in
the brain) integral over distributions with no analytical
representation (the local pdfs, generated with MCMC), and
hence clearly cannot be solved analytically.

Fortunately, as we have seen in previous sections, even
when explicit integration is unfeasible, it is often possible
to compute integrals implicitly by drawing samples from
the resulting distribution. In our case, in order to draw a
sample from ?(JA — B|Y) we may draw a sample from
the posterior pdf on fiber direction at each point in space
and construct the streamline (henceforth referred to as a
“probabilistic streamline”) from A given these directions.
Computationally, this process is extremely cheap. Sam-
ples from the local pdfs at each voxel have already been
generated, so to generate a single probabilistic streamline
from seed point A, referring to the current “front” of the
streamline as z, it is sufficient simply to start z at A and:

® Select a random sample, (0, ¢) from P(0, ¢|Y) at z.
® Move z a distance s along (6, ¢).
® Repeat until stopping criterion is met.

This probabilistic streamline is said to connect A to all
points B along its path. By drawing many such samples,
we may build the spatial pdf of #(3A — B|Y) for all B. We
may then discrteize this distribution into voxels by simply
counting the number of probabilistic streamlines which
pass through a voxel B, and dividing by the total number
of probabilistic streamlines.
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Interpolation

The sampling technique above relies on the local pdfs
existing in continuous space. Unfortunately, we only have
access to MR acquisitions, and hence these local pdfs, on
a discrete acquisition grid. We need a technique to gener-
ate samples from the local pdfs at a point not on the grid.

An obvious solution to this problem would be to inter-
polate the original data (using a standard interpolation
scheme, such as sinc or trilinear interpolation), and gen-
erate the local pdf on fiber direction given this new inter-
polated data. This would be extremely computationally
costly, but also, on further consideration, may not concep-
tually be the best thing to do. In the middle of large fiber
bundles, where neighboring voxels have similar fiber di-
rections (each with low uncertainty), the choice of inter-
polation scheme will have very little effect. However, in
places where neighboring voxels may have significantly
different directions, such as at the edge of fiber bundles or
where different bundles meet, such an interpolation
scheme will generate a fiber direction in between the di-
rections of the voxels on the grid. Moreover, the result of
sinc or linear interpolation of data which is related to
parameters in a highly nonlinear (e.g., exponent of trigo-
nometric functions) manner is likely to produce interpo-
lated data which does not fit well to the model, and thus
the resulting most probable fiber direction will be highly
dependent on the noise in the measurements at the grid
locations. An alternative to interpolating the data in this
fashion is to choose an interpolation scheme which will
pick a sample from one of the neighboring voxels on the
grid. In a probabilistic system, we also have the opportu-
nity to use a probabilistic interpolation scheme. That is,
we can choose a scheme which chooses the data from a
single neighboring point on the acquisition grid, but the
probabilities of choosing each neighbor will be a function,
g, of their positions relative to the interpolation site. There
are many possible functions for g, but we have chosen one
which is analogous to trilinear interpolation. That is, in
the x-dimension the probability of choosing data from
floor(x) is g(floor(x)[x) = ceil(x) — x/ceil(x) — floor(x),
and from ceil(x)is glceil(x)|x) = 1 — g(floor(x)[x), and
the same in the y and z-dimensions. If a streamline, z, were
to pass through the same point twice, different nearest
neighbors may be chosen, reflecting our lack of knowledge
of the true pdf at that point.

Stopping Criteria

Algorithms which generate streamlines based on maxi-
mum likelihood fiber directions (e.g. principal eigenvector
from a diffusion tensor fit) have tended to require harsh
streamline stopping criteria based on fractional anisotropy
and local curvature (angle between successive steps). Frac-
tional anisotropy thresholds have tended to be in the range
of 0.2-0.4 (e.g., Ref. 7), and curvature thresholds have
been as strict as requiring successive steps to be within 45°
(e.g., Ref. 5). These criteria are in place to reduce the
sensitivity of the streamlining to noise in the image, partial
volume effects, and other related problems. The aim is to
reduce the possibility of seeing false-positives in the re-
sults by only progressing when there is high confidence in
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fiber direction and when the direction is anatomically
plausible. The downside of these constraints is the limita-
tions that they impose on which fiber tracts may be recon-
structed and where in the brain they may occur. For ex-
ample, deep gray matter structures, despite displaying a
high degree of order in their principal diffusion directions,
tend to have low anisotropy (often below the threshold for
streamlining algorithms). Streamlines will also tend to
terminate well before cortex as anisotropy reduces and
uncertainty in fiber direction increases.

In such circumstances a probabilistic algorithm has sig-
nificant advantages. First, in regions where fiber direction
is uncertain (these often coincide with regions of low
anisotropy), the algorithm has available to it a direct rep-
resentation of this uncertainty. Hence, even though it can-
not progress along a single direction with high confidence,
it can progress in many directions. The uncertainty in this
area will be represented by voxels further along the path
having lower probabilities associated with them; however,
a high probability of connectivity to the seed voxel may
still be associated with the region into which the paths
progress. A second useful advantage of a probabilistic
algorithm is robustness to noise. It can be difficult to track
beyond a noisy voxel using a nonprobabilistic algorithm,
as it may initiate a meaningless change in path. However,
with a probabilistic algorithm, paths which have taken
errant routes tend to disperse quickly, so that voxels along
these paths are classified with low probability. In contrast,
“true” paths tend to group together, giving a much higher
probability of connection for voxels on these paths.

These advantages significantly reduce the need to an-
isotropy and curvature stopping criteria. The results pre-
sented here are generated with no anisotropy threshold
and with a local curvature threshold of *80° for each
sample. This curvature threshold is required, as, without
it, the sampled streamlines may track back along a path
similar to one already visited, artificially increasing the
probability along the path. In order to reduce this effect
further, we check, at every step, whether the path is enter-
ing an area it has already visited and terminate those that
are.

A Note on Interpretation

The implication of accounting for the uncertainty in local
fiber directions, and hence estimating a spatial probability
distribution of connectivity from the seed point, is that the
recovered connectivity distribution is spread in space (see
Global Connectivity Estimation: Results). It is tempting to
think of this distribution as a distribution of connections
from the seed point. This is manifestly not the case. Ac-
cording to the model used earlier in this section, this
spatial pdf represents confidence bounds on the location
of the most probable single connection. It is certainly true
that some of the uncertainty estimated locally is likely to
be due to partial volume effects, such as a spread of fiber
directions in the voxel, and therefore the presence in the
brain of multiple connection sites from the seed may result
in a diffuse spatial pdf. However, while the model of
diffusion at each voxel includes only a single fiber direc-
tion, the global inference is clearly on a single pathway.
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Global Connectivity Estimation: Methods

Data Acquisition

Diffusion-weighted data were acquired with an optimized
method based on echo planar imaging, implemented on a
General Electric 1.5 T Signa Horizon scanner with a stan-
dard quadrature head-coil and maximum gradient strength
of 22 mTm™*.

The diffusion weighting followed an optimized scheme
(21) where the diffusion weightings were isotropically dis-
tributed along 54 directions. With the diffusion parameters
d and D equal to 34 and 40 ms, respectively, the b-value
was 1150 smm ™~ ?, the optimum for white matter DTI mea-
surements. Six diffusion-weighted volumes were acquired
with b-value 300 smm™?, and six volumes were acquired
with no diffusion weighting. Each volume covered the
whole brain with 60 slices of 2.3 mm slice thickness, field
of view 220 X 220 mm?®. An imaging matrix of 96 X 96 was
used, giving isotropic voxels of 2.3 X 2.3 X 2.3 mm® and
the images were reconstructed on a 128 X 128 matrix,
giving a final resolution of 1.7 X 1.7 X 2.3 mm®. An
optimized cardiac gating scheme (21) was used to mini-
mize artifacts arising from cerebrospinal fluid pulsatile
flow. The total scan time for the DTI protocol was approx-
imately (depending on heart rate) 20 min.

The high-resolution T,-weighted scan was obtained
with a 3D inversion recovery prepared spoiled gradient
echo (IR-SPGR). Parameters for the acquisition were:
FOV = 310 X 155; matrix size = 256 X 128; in-plane
resolution = 1.2 X 1.2 mm? 156 slices of 1.2 mm slice
thickness; inversion time = 450 ms; repetition time =
2 sec; echo time = 53 ms.

Estimation

Estimation was carried out exactly as before, except that,
for reasons of computational storage, when carrying out
estimation on the whole brain, as opposed to a single slice,
we drew samples every 20" jump instead of every 279,

Global Connectivity Estimation: Results

In this section, we present some results of applying this
methodology to the estimation of connectivity distribu-
tions from voxels in human thalamus. Knowledge of
thalamo-cortical connectivity is sparse in human, but rich
in primate. These results, and others, are analyzed, inter-
preted, and compared with the nonhuman literature in
detail in Ref. 8. Here we present them as a first step toward
validation of probabilistic tractography as presented in
this article and evidence suggesting that connectivity stud-
ies are feasible with diffusion weighted imaging, even
between gray matter structures.

Results From the Thalamus

Figure 4a,b shows results from seeding different parts of
the visual system. In Fig. 4a the seed point was in the
lateral geniculate nucleus (LGN), a thalamic nucleus
which processes visual information. The connectivity dis-
tribution heads anteriorly into the optic tract and posteri-
orly into the visual cortex, consistent with the known
connections of the LGN in nonhuman primate (22,23).
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However, when the seed is placed in the optic tract (Fig.
4b), two distinct pathways emerge. The two coronal scans
in this figure show these two pathways just after they split
(near the (coronal) level of LGN) and around 10 mm pos-
terior to the split. The righthand pathway follows the route
of the pathway in Fig. 4a. The lefthand pathway (see the
axial slice in Fig. 4b), heads inferior to LGN, around the
posterior ventral edge of thalamus to the superior collicu-
lus. These distributions correspond to the two known
branches of the primate visual system (23); the optic radi-
ations (via LGN) and the superior-collicular brachium.

Figure 4c,d shows connectivity distributions seeded in
different areas in thalamus. Figure 4c shows a distribution
seeded in a medial dorsal area in thalamus. In primate,
nuclei in the medial dorsal nuclear cluster of thalamus
receive projections from anterior temporal lobe (24-26)
and maintain reciprocal projections with prefrontal cortex
(27,28). The connectivity distribution in Fig. 4c progresses
anteriorly into the prefrontal cortex, and initially posteri-
orly around the posterior edge of thalamus followed by
anteriorly into the anterior temporal lobe. Figure 4d shows
a distribution seeded in a ventral lateral area in thalamus.
In primate thalamus, the ventral lateral nuclear group pro-
cesses motor information and maintains strong connec-
tions with other motor zones (29,30), such as the primary
motor cortex and cerebellar cortex. The connectivity dis-
tribution in 4d progresses superiorly to primary motor
cortex and inferiorly to cerebellar cortex and brainstem.

The interpretation issues discussed in the previous sec-
tion are particularly relevant to the distributions shown in
Fig. 4a—d. Figure 4a,b,d shows pathways which mainly
exist in large white matter pathways, with correspond-
ingly low uncertainty in fiber direction. Hence, the distri-
butions seen in these figures are narrow. This should not
be interpreted to mean that true connections from the seed
voxel are necessarily correspondingly focused, but rather
that the uncertainty on the pathway defined by the prin-
cipal diffusion directions is low. The pathway seen in 4c
spreads as it passes through a region of uncertainty while
approach the temporal lobe and also encounters uncer-
tainty before entering prefrontal cortex. Again, this should
be interpreted as uncertainty in the connection defined by
the principal diffusion directions. To reiterate the point
previously: In order to infer on diffuse connections from a
single seed, the model of diffusion within a voxel must
allow for multiple fibers passing through the voxel. How-
ever, as can be seen in Fig. 4b,d, the presence of local fiber
divergence may well be reflected in the local pdf at, for
example, branching points in the pathways. In these two
examples, branches which are known to occur in primate
brain are found by accounting for uncertainty in the prin-
cipal diffusion direction.

To test the consistency of the results throughout the
thalamus, we seeded every voxel in thalamus (manually
outlined on the T,-weighted image), and classified the
results by the cortical area with the highest probability of
connection to the seed. Four cortical areas were manually
outlined on the T, image to correspond with the principal
projection and reception sites of thalamic nuclear clusters
in primate brain (23) (Fig. 4e):
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Connected nuclear

Cortical zone . ) Color in Fig. 4e
cluster in primate
Prefrontal-temporal =~ Mediodorsal, ventral Purple
anterior
Motor-premotor Ventral lateral Orange
Sensory Ventral posterior Sky blue
Occipital Lateral geniculate, Yellow

pulvinar (partly)

Figure 4f shows the nuclei in human thalamus, as defined
by histological staining (31) with, overlaid, a color map
showing predictions derived from primate data of the
strongest cortical connection sites.

We skull-stripped the diffusion-weighted image (32) and
performed affine registration between the diffusion-
weighted and T, images (33,34), taking care never to resa-
mple the diffusion image. We then ran probabilistic trac-
tography seeded from every voxel in the structural scan,
classifying the results as above. The results can be seen in
Fig. 4g. The classification of thalamic seed voxels by their
connectivity distributions reveals a segmentation of tha-
lamic nuclear clusters broadly consistent with the histo-
logical prediction (underlaid in Fig. 4f), and most probable
connected cortical zones consistent with predictions from
primate data (overlaid in color in Fig. 4f). Furthermore, the
results show approximate bilateral symmetry in thalamic
seed voxels.

These results are examined and extended in detail in
Ref. 8, including a finer segmentation of the thalamic nu-
clei resulting from an increased number of cortical zones
and a detailed look at the information available in the
probability values themselves.

DISCUSSION

In general, analysis of diffusion-weighted data has involved
the fitting of a model of local diffusion to the diffusion-
weighted data at each voxel. This model may assume that
local diffusion is Gaussian in profile (the diffusion tensor
model (10)) or may allow a more complex structure for local
diffusion (e.g., a spherical harmonic decomposition (35,36)).
However, in all cases, the assumed model is of the diffusion
profile and not of the underlying fiber structure, and any
analysis which has occurred after the fitting of this local
model has made the assumption that the parameters in this
model are known absolutely.

There are two important, but separate, issues here. The
first is that the parameters of real interest to the scientist
are ones which relate directly to the underlying fiber struc-
ture, and not to the diffusion profile. These underlying
parameters may have convincing markers within the fitted
diffusion profile (for example, anisotropy measures (2,37)
from the diffusion tensor fit have been shown to be a
marker for collinearity of fibers within a voxel), but any
attempt to recreate the fiber structure from these profiles is
essentially an educated guess. There has been no model
proposed to predict how a specific structure or distribu-
tion of fiber directions within a voxel will reflect itself in
the measured diffusion-weighted NMR signal. The second
issue is that, even when fitting a model of local diffusion,
the resulting parameters have uncertainty associated with
them. Factors such as noise in the NMR signal (both phys-
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ical and physiological) and, crucially, the inadequacy of
the proposed model, lead to this uncertainty, which
should be incorporated in any further processing (such as
tractography schemes).

In this article we have presented a method for the full
treatment of this uncertainty. We have shown how, using
Bayes’ equation, along with well-established methods for
its numerical solution, it is possible to form a complete
representation of the uncertainty in the parameters in any
generative model of diffusion, in the form of posterior
probability density functions on these parameters. We
have applied this Bayesian estimation technique to two
simple local models of diffusion, the diffusion tensor
model and a simple partial volume model, with only a
single anisotropically diffusing direction in the voxel. We
have examined the results in these two cases, comparing
the posterior distributions with empirical measurements
of uncertainty.

We then consider uncertainty at a global level. We out-
line the theory behind moving from the pdfs on local PDD
to an estimate of the probability distribution on global
connectivity. When estimating global connectivity, we
first have to choose between the available local models of
diffusion. We have chosen to use a simple partial volume
model. The reason for this choice is that, by choosing a
model which allows for only a single fiber direction within
a voxel, we maximize the chance that the effect of diverg-
ing or splitting fibers will be seen as uncertainty in the
principal diffusion direction, and not as a change in the
diffusion profile, as might be the case if the diffusion
tensor model were chosen. However, the similarity in un-
certainty between the two models that we find in the
empirical validation suggests that this decision is made
largely for conceptual completeness, and that the results
would have been similar if the diffusion tensor model had
been chosen.

The next stage is to define a model of global connectiv-
ity. The model we chose is identical to that used in stream-
lining algorithms (e.g., Refs. 4—6,19). That is, given abso-
lute knowledge of local fiber directions, connectivity is
assumed between two points if, and only if, there exists a
connected path between them through the data (see Eq.
[20]). The crucial difference between the probabilistic trac-
tography proposed here and the streamlining algorithms
referenced above can be seen in Eq. [21]. Put simply, the
result of this equation incorporates every possible fiber
orientation at every voxel and the probability of each of
these fiber directions given the acquired MR data. We
simply allow for uncertainty in fiber direction when com-
puting streamlines. The practicality of solving this equa-
tion is an algorithm similar in nature to others presented,
along with this method, at ISMRM 2002 (38-40), effec-
tively repeatedly sampling local pdfs to create streamlines
and regarding these streamlines as samples from a global
pdf. A crucial difference between these methods and our
method is that we choose to compute the local pdfs in a
rigorous fashion given the MR data. The methods refer-
enced above all use heuristic experience-based relation-
ships between the shape of the fitted diffusion tensor and
the assumed pdf on local fiber orientation.

An important result of our procedure is that the recov-
ered “connectivity distributions” are strictly probability
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distributions on the connected pathway through dominant
fiber directions. That is, there is no explicit representation
of splitting or diverging fibers in either the local or global
model. We are strictly inferring on a single pathway lead-
ing from the seed point, and therefore in order to find, for
example, splitting pathways, the effect of fiber divergence
within a voxel must reveal itself as uncertainty in the PDD.
It can be seen from the local results section that, at least in
the cases presented here, this effect can be seen. Figure 4b
shows sensitivity to the splitting of fibers from the optic
tract, into the superior collicular brachium, and the direct
fibers of the optic radiations. Figure 4d also shows sensi-
tivity to branching fibers. Descending fibers from the ven-
tral lateral (motor) nucleus of the thalamus split into two
distinct branches, as is to be expected from primate stud-
ies. The first heads down to the brainstem and the second
into the superior cerebellar cortex. However, because fiber
divergence within a voxel is treated as uncertainty in
principal diffusion direction, this sensitivity to diverging
and branching fibers will be dependent on the experimen-
tal design; in general, the more information in the MR
measurements, the lower the uncertainty in principal dif-
fusion direction. Taking this effect to its logical extreme, if
we were to gather an infinite number of MR measurements,
there would be no uncertainty in principal fiber direction,
and the marginal probability distribution on the dominant
streamline would be infinitely narrow, i.e., the simple
streamlining solution. Ideally we would like to infer, not
on connectivity via a single connection, but on an anatom-
ical distribution of connectivity. In order to do this we
must allow for divergence, branching, and crossing of fi-
bers in our local model of diffusion. We propose one such
model which will allow for inference on an underlying
distribution of fiber orientations.

Probably the most important result in this article is in
Fig. 4e,f,g. Here we seed every voxel in the thalamus and
compute the respective connectivity distributions, record-
ing the probability of connectivity to each of four cortical
masks. There are two striking features in this figure. The
correspondence of the connectivity-based thalamic seg-
mentation between the left and right thalami (4g) provides
strong evidence for the robustness of the technique, even
when seeding from deep gray matter areas. This is backed
up by the marked similarity between the predicted cortical
zones from primate data (4f) and the connectivity based
segmentation (4g). This second feature also provides
strong, albeit indirect, validation for the use of diffusion
based tractography in any guise.

In summary, we have presented a technique for charac-
terizing the uncertainty associated with parameter esti-
mates in diffusion-weighted MRI and for propagating this
uncertainty through the diffusion-weighted data. This al-
lows us to compute the probability distribution on the
location of the dominant fiber pathway so that we may
quantify our belief in the tractography results.
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APPENDIX
Gamma Distribution

x has a two-parameter gamma distribution, denoted by
I'(a, b), with parameters a and b, if its density is given by:

a

I(a) ™

a—1,—bx

P(x|a, b) = e [22]

where I'(a) is the Gamma function. A x? distribution with
v degrees of freedom corresponds to the distribution I'(v/2,
1/2). The b parameter is a scale parameter. The one-param-
eter gamma distribution corresponds to I'(a, 1). A sample
from Ga(a, b) can be obtained by taking a sample from
I'(a, 1) and dividing it by b. Note that a gamma distribu-
tion has mean = a/b and variance = a/b?.

Full Conditional Distribution for Precision Parameters

The full conditional distribution for Gibbs sampling from
the precision parameters 1/¢* in both models is:

o Ly, o |=tla+ 2, b 1§:Y :
2| Y Q- = a+ts, +2v:1(i_l~1“i) [23]

where Y is the data, _ is the set of all parameters except
o, n is the number of acquisitions, Y; is the value of the
data at the i acquisition, a and b are the parameters in the
Gamma prior on the precision, and p; is the value for the
i™ acquisition predicted by the model. w;, for the diffusion
tensor model is given by Eq. [10], and for the simple partial
volume model, by Eq. [12].
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