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Functional magnetic resonance imaging studies often involve the

acquisition of data from multiple sessions and/or multiple subjects. A

hierarchical approach can be taken to modelling such data with a

general linear model (GLM) at each level of the hierarchy introducing

different random effects variance components. Inferring on these

models is nontrivial with frequentist solutions being unavailable. A

solution is to use a Bayesian framework. One important ingredient in

this is the choice of prior on the variance components and top-level

regression parameters. Due to the typically small numbers of sessions

or subjects in neuroimaging, the choice of prior is critical. To alleviate

this problem, we introduce to neuroimage modelling the approach of

reference priors, which drives the choice of prior such that it is

noninformative in an information-theoretic sense. We propose two

inference techniques at the top level for multilevel hierarchies (a fast

approach and a slower more accurate approach). We also demonstrate

that we can infer on the top level of multilevel hierarchies by inferring

on the levels of the hierarchy separately and passing summary statistics

of a noncentral multivariate t distribution between them.
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Introduction

Functional magnetic resonance imaging studies are typically

used to address questions about activation effects in populations of

subjects. This generally involves a multisubject and/or multises-

sion approach where data are analysed in such a way as to allow

for hypothesis tests at the group level (Holmes and Friston, 1998;

Worsley et al., 2002), for example, to assess whether the observed

effects are common and stable across or between groups of interest.

Calculating the level and probability of brain activation for a

single subject is typically achieved using a linear model of the
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signal together with a Gaussian noise model for the residuals. This

model is commonly called the general linear model (GLM), and

much attention to date has been focussed on ways of modelling and

fitting the (time series) signal and residual noise at the individual

single-session level (Bullmore et al., 1996; Woolrich et al., 2001;

Worsley and Friston, 1995).

To be able to generate results that extend to the population, we

also need to account for the fact that the individual subjects

themselves are sampled from the population and thus are random

quantities with associated variances. It is exactly this step that

marks the transition from a simple fixed-effects model to a mixed-

effects model,2 and it is imperative to formulate a model at the

group level that allows for the explicit modelling of these addi-

tional variance terms (Holmes and Friston, 1998; Frison and

Pocock, 1992).

We can formulate the problem of group statistics in neuro-

imaging as being hierarchical (Beckmann et al., 2003; Friston et

al., 2002). For example, the different levels of the hierarchy could

be separate GLMs for a session level, subject level and group level.

In this paper, we attempt to deal with inference on these multilevel

GLM hierarchies by utilising a fully Bayesian framework. Typi-

cally, the most important inference is at the top level of the

hierarchy, for example, we may be looking for significance of a

group mean. Whether we are looking to infer at the top level with

the within-session FMRI time series data (Friston et al., 2002) or

with summary statistic results from the level below (Holmes and

Friston, 1998; Worsley et al., 2002), a fully Bayesian approach

provides us with the means to assess the full uncertainty in the

parameter of interest (contrasts of regression parameters) at the top

level; taking into account all of the unknown variance components

(fixed and random) in the model.

Bayesian statistics provides the only generic tool for inferring

model parameter probability distribution functions from data. It

provides strict rules for the rational and consistent adjustment of

belief (in the form of probability density functions) in the presence
2 Note that in the FMRI literature, this has often been called a random-

effects model. Within this paper, however, the separate fixed-effects and

random-effects contributions to the mixed-effects variance are considered,

thus making a clear distinction between ‘‘random’’ and ‘‘mixed effects’’

important.
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of new information (Cox, 1946), which are not available in the

frequentist literature. The major consequences of this are twofold.

First, we may make inference about the absolute value of the

parameters of interest, that is, we may ask questions of our

parameters such as, ‘‘What is the probability that h lies in the

interval [h0, h1]?’’, a question unavailable to any frequentist

technique. Frequentist statistics is typically limited to posing

questions of the data under the ‘‘null hypothesis’’ that the param-

eter value is zero. Inference in a frequentist framework is then

limited to the simple acceptance or rejection of this null hypothesis

without being able make any statement about the parameter values.

Second, Bayesian statistics gives us a tool for inferring on any

model we choose and guarantees that uncertainty will be handled

correctly. Only in certain special cases (not including the model

presented here) is it possible to derive analytical forms for the null

distributions required by frequentist statistics. In their absence,

frequentist solutions rely on null distributions derived from the data

(e.g., permutation tests), losing the statistical power gained from

educated assumptions about, for example, the distribution of the

noise.

These features of Bayesian analysis mean that we may make

inference on physiological parameters of the haemodynamic re-

sponse in the complex nonlinear balloon model (Friston, 2002), on

spatial noise relationships in multivariate spatial autoregressive

models of FMRI data (Woolrich et al., in press) or, in this paper,

on higher level statistics in the presence of multiple variance

components.

One important ingredient in a Bayesian approach is the choice

of prior on the variance components and top-level regression

parameters. Due to the typically small numbers of observations

in neuroimaging above the first level (e.g., small numbers of

subjects), this choice of prior is critical. To solve this problem, we

introduce to neuroimage modelling the approach of reference

priors, which drives the choice of prior such that it is non-

informative in an information-theoretic sense. For GLMs where

a frequentist solution is available, reference analysis gives the

same inference as a frequentist approach. Importantly, reference

analysis allows us to perform inference when frequentist solutions

are unavailable.

Using fully Bayesian reference analysis, we propose two

approaches to inferring at the top level; these are a fast approxi-

mation to the marginal posterior and a slower approach utilising

Markov Chain Monte Carlo (MCMC) followed by a multivariate

noncentral t distribution fit to the MCMC chains.

In Friston et al. (2002), the hierarchical model is solved ‘‘all in

one’’ using the within-session FMRI time series data as input.

However, in neuroimaging, where the human and computational

costs involved in data analysis are relatively high, it is desirable to

be able to make top-level inferences using the results of separate

lower level analyses without the need to reanalyse any of the lower

level data; an approach commonly called the summary statistics

approach to FMRI analysis (Holmes and Friston, 1998). Within

such a summary statistic split-level approach, group parameters of

interest can easily be refined as more data become available.

In Holmes and Friston (1998), when inferring at the top level,

this summary statistic split-level approach is shown to be equiv-

alent to inferring all in one under certain conditions (e.g., the

approach in Holmes and Friston, 1998, requires balanced designs).

Beckmann et al. (2003) show that top-level inference using the

split-level summary statistics approach can be made equivalent to

the all-in-one approach with no restrictions, if we pass up the
correct summary statistics (in particular, the covariances from

previous levels). Furthermore, Beckmann et al. (2003) demonstrate

that by taking into account lower level covariance heterogeneity, a

substantial increase in higher level z statistic is possible. However,

Beckmann et al. (2003) only show that this is the case when all

variance components are known. Independently, in this paper,

using the fully Bayesian approach, we show this equivalence for

when the variance components (excluding autocorrelation) are

unknown. The equivalence relies on the assumption that the

summary statistics, which correspond to the marginal distributions

of the GLM regressions parameters, can be represented as a

multivariate noncentral t distributions. Between the first level

(within session) and the second level, this can be shown analyti-

cally. For summary statistics at higher levels, this is an assumption

which we test empirically using artificial data.

In summary, there are three main contributions presented in this

paper. Firstly, we introduce reference analysis to neuroimaging.

Secondly, we propose two inference techniques at the top level for

multilevel hierarchies (a fast approach and a slower more accurate

approach). Thirdly, we demonstrate that we can infer on the top

level of multilevel hierarchies by inferring on the split levels

separately and passing summary statistics between them.

Paper overview

We start in the Model section by considering the traditional

two-level model. In the Inference section, using the reference

analysis fully Bayesian framework, we show how inference on

the two-level model can be split into separate inference on the two

levels with the summary statistics of a multivariate noncentral t

distribution being passed between the two levels of inference. We

then propose two approaches to inferring at the top level. In Higher

level models, we discuss how we can extend the split model

inference approach to higher level models than the two-level

model. In Multiple group variances, we also discuss how we can

deal with multiple group variances under certain conditions. In the

Artificial data section, we validate the crucial assumption of the

marginal distribution of the GLM regressions parameters being a

multivariate noncentral t distribution at levels higher than the first

using artificial data. Finally, in the FMRI data section, we go on to

show results on FMRI data.
Model

To begin with, we consider the familiar two-level univariate

GLM for FMRI. For example, the model that in the first level deals

with individual sessions for individual subjects, relating time series

to activation, and in the second level deals with a group of subjects

or sessions (or both), relating the combined individual activation

estimates to some group parameter, such as mean activation level.

Note that all models and inference in this paper are mass univar-

iate, that is, each voxel is modelled and processed independently of

the others in the data.

Two-level GLM

Consider an experiment where there are NK first-level sessions

and that for each first-level session, k, the preprocessed FMRI data

are a T � 1 vector Yk, the T � PK design matrix is Xk and bk is a

PK � 1 vector of parameter estimates (k = 1,. . ., NK). The
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preprocessed FMRI data, Yk, is assumed to have been prewhitened

(Bullmore et al., 1996; Woolrich et al., 2001). An individual GLM

relates first-level parameters to the Nk individual data sets:

Yk ¼ Xkbk þ ek; ð1Þ

where ek f N(0,rk
2 I). In this paper, we consider the variance

components as unknown with the exception of the first-level FMRI

time series autocorrelation. The residuals ek are assumed to be

prewhitened data and as a result are uncorrelated. This inherently

means that we assume that the autocorrelation is known with no

uncertainty, an assumption that is commonly made in FMRI time

series analysis (Bullmore et al., 1996; Friston et al., 2000; Woolrich

et al., 2001). Note that the first-level design matrices, Xk, do not

need to be the same for all k.

Using the block diagonal forms, that is, with

Y ¼

Y1

Y2

]

YNK

2
666666664

3
777777775
; X ¼

X1 0 : : : 0

0 X2 0

] O ]

0 : : : 0 XNK

2
666666664

3
777777775
;

bK ¼

b1

b2

]

bNK

2
666666664

3
777777775

and e ¼

e1

e2

]

eNK

2
666666664

3
777777775

the two-level model is

Y ¼ XbK þ eK ð2Þ

bK ¼ Xgbg þ eg ð3Þ

where Xg is the NK � PG second-level design matrix (e.g.,

separating controls from normals or modelling different sessions

for subjects), bg is the PG � 1 vector of second-level parameters,

and eg f N(0, rg
2I) and where eK f N(0, VK) with V denoting the

diagonal form of first-level covariance matrices rk
2I. We call rg

2 the

random effects variance.
Inference

There are no solutions in the frequentist literature to this model

when the variance components are unknown. Furthermore, infer-

ence is highly sensitive to any assumptions made due to the low

number of observations typically available at the subject level in

FMRI.

Friston et al. (2002) have proposed an approximate Bayesian

solution for the model all in one by assuming that the posterior

over the regression parameters is multivariate normal. However,

this does not fully incorporate the full uncertainty of the variance

components into the parameters of interest (the regression param-

eters) at the top level. Indeed, the marginal posterior over the

regression parameters turns out to be multivariate t distributed.
In this section, we start by introducing the Bayesian inference

framework. However, when using a Bayesian framework, we also

need to choose priors for the parameters in our model. In particular,

we need to choose priors on the top-level regression and variance

parameters. Hence, in the next part of this section, we describe how

we can use reference priors as noninformative priors.

We could proceed to infer on the full model all in one. Instead,

by using the fully Bayesian approach with reference priors, we go

on to show how we can use summary statistics (from inferring on

the first-level model in isolation) as the input into a second level.

We show that this gives the same inference as we would obtain

from using the full model all in one.

Bayesian inference

The two rules at the heart of Bayesian learning techniques are

conceptually very simple. The first tells us how (for a model M),

we should use the data Y to update our prior belief in the values of

the parameters H, p(HjM) to a posterior distribution of the

parameter values p(HjY, M). This is known as Bayes’ rule:

pðH j Y;MÞ ¼ pðY j H;MÞpðH j MÞ
pðY j MÞ ð4Þ

Unfortunately, calculating this posterior pdf is seldom straight-

forward. The denominator in Eq. (4) is:

pðY j MÞ ¼
Z

H
pðY j H;MÞpðH j MÞdH ð5Þ

an integral that is often not tractable analytically. To make matters

worse, this joint posterior pdf on all parameters is often not the

distribution, which we are most interested in. We are often

interested in the posterior pdf on a single parameter or an

interesting subset of parameters. Obtaining these marginal distri-

butions again involves performing large integrals,

pðHI j Y;MÞ ¼
Z

H�I

pðH j Y;MÞdH�I ð6Þ

where HI are the parameters of interest and H�I are all other

parameters. Again, these integrals are seldom tractable analytically.

One solution is to use approximations to the marginal distri-

butions. This is the approach we take in the Fast posterior

approximation section. Another solution is to draw samples in

parameter space from the joint posterior distribution, implicitly

performing the integrals numerically. For example, we may repet-

itively choose random sets of parameter values and choose to

accept or reject these samples according to a criterion based on the

value of the numerator in Eq. (4). It can be shown (e.g., Gilks et

al., 1996) that a correct choice of this criterion will result in the

accepted samples being distributed according to the joint posterior

pdf (Eq. (4)). Schemes such as this are rejection sampling and

importance sampling, which generate independent samples from

the posterior. Any marginal distributions may then be generated by

examining the samples from only the parameters of interest.

However, these kinds of sampling schemes tend to be very slow,

particularly in high dimensional parameter spaces, as samples are

proposed at random, and thus each has a very small chance of

being accepted.

Markov Chain Monte Carlo (MCMC) (for texts on MCMC,

see Gamerman, 1997; Gilks et al., 1996) is a sampling technique
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that addresses this problem by proposing samples preferentially in

areas of high probability. Samples drawn from the posterior are

no longer independent of one another, but the high probability of

accepting samples allows for many samples to be drawn and, in

many cases, for the posterior pdf to be built in a relatively short

period of time. This is the approach we take in the MCMC

section.

Priors and reference analysis

In the fully Bayesian framework, the choice of prior is critical

to the inference we perform. In group statistics for FMRI, the

number of observations we have is typically so small as to make

the influence of the priors significant. As we have no prior

information, we want the priors we use to be in some sense

‘‘noninformative’’, that is, we want to ‘‘let the data speak for

itself’’. Reference priors are priors that attempt to reflect such prior

ignorance. For an overview, see Bernardo and Smith (2000) and

Kass and Wasserman (1996).

An intuitive approach would be to choose the prior of h to be

p(h) = 1. However, the resulting posteriors can change significantly

depending on the parameterisation used. This is because a constant

prior for one parameter will not typically transform into a constant

prior for another. To overcome this reparameterisation problem, the

Jeffreys prior was introduced for one-dimensional problems (Kass

and Wasserman, 1996):

pðhÞ~detðHðhÞÞ1=2 ð7Þ

where H(h) is the Fisher information. However, this has difficulties

dealing with multidimensional problems, that is, H
!

¼ ðh1 . . . hmÞ.
The Berger–Bernardo method (Bernardo and Smith, 2000) of

reference analysis overcomes this by determining reference priors

using information-theoretical ideas that maximise the amount of

expected ‘‘information’’ from the data. See Appendix E for the

derivation of the reference priors used in this paper.

The use of reference priors can be justified by consideration of

the information theory that underpins them (Bernardo and Smith,

2000). However, whilst in this paper the null hypothesis frequentist

inference is generally unknown, it is interesting to note that the

Berger–Bernardo reference priors give the same inference as

frequentist null hypothesis testing for cases of GLM inference

for which the frequentist null hypothesis test is known. For

example, in frequentist inference on the GLM, we typically

examine the probability of attaining statistics for linear combina-

tions (contrasts) of regression parameters under the null hypothesis.

In cases where the null distribution on the GLM is known

analytically, the Berger–Bernardo reference priors give the same

probabilities when we test the probability that a contrast is greater

than zero.

First level

Here we consider the first level in isolation and derive the

marginal posterior distribution for bk, the vector of GLM height

parameters for the first-level model fit. Eq. (1) gives us the

likelihood for a first-level model in isolation, p(Ykjbk, rk
2). The

joint posterior on all parameters in this model is then:

pðbk ; r
2
k j YkÞ~pðYk j bk ; r

2
kÞpðbk ; r

2
kÞ ð8Þ
where p(bk,rk
2) is the prior distribution on the regression and

variance parameters. We use the Berger–Bernardo reference

prior (see Priors and reference analysis), which is:

pðbk ; r
2
kÞ ¼ 1=r2

k : ð9Þ

However, Eq. (8) does not give the distribution of interest for

inference. We would like to infer on the posterior distribution on

the activation height parameters bk when the effect of estimating rk
2

is accounted for, that is, we would like to infer on p(bkjYk). To get

this distribution, we must marginalise the joint posterior (Eq. (8))

over the parameter of no interest rk
2. This integral gives a

multivariate noncentral t distribution for the posterior distribution

on bk (Lee, 1997):

pðbk j YkÞ~
Z

pðYk j bk ; r
2
kÞ=r2

kdr2
k ¼ Tðbk ; lbk

; r2
bk

Rbk
; mbk

Þ;

ð10Þ
where

lbk
¼ ðXT

k XkÞ�1XT
k Yk

r2
bk

¼ ðYk � Xklbk
ÞT ðYk � Xklbk

Þ=ðT � PKÞ

Rbk
¼ ðXT

k XkÞ�1

mbk
¼ T � PK : ð11Þ

Note that if inference is performed in the frequentist framework,

the null distribution on bk is the multivariate central t distribution

with the exact same covariance structure, rbk

2 Rbk
, and degrees of

freedom, mbk
, and the maximum likelihood estimate for bk is

exactly lbk
, the mean of the posterior distribution in the Bayesian

framework.

Two-level

Here we consider the full two-level model laid out in Eqs. (2)

and (3), applying the same ideas as in the previous section to infer

on the second-level GLM height parameters bg. We will substitute

into the posterior for the full two-level model the summary result of

the first-level model derived in the previous section. This will

provide us with the way of inferring on the full two-level model

using just the summary result of the first level, that is, without

reusing the data Y.

Considering Eqs. (2) and (3). The full joint posterior for the

two-level model is:

pðbg; r
2
g;bK ;s

2
K j YÞ~

Y
k

fpðYk j bk ; r
2
kÞgpðbK j bg; r

2
gÞ

�pðbg; r
2
g;s

2
KÞ; ð12Þ

where sK
2 is the (K � 1) vector of first level variances rk

2, and bK is

the (K � 1) vector of first level regression parameters bk (for k =

1. . .K). We set the prior to be the Berger–Bernardo reference prior

for this full two-level model (see Priors and reference analysis):

pðbg; r
2
g;s

2
KÞ ¼

1

r2
g

Y
k

1

r2
k

: ð13Þ
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Note that this model specification gives the posterior distribu-

tion, not only on the second-level parameters (bg,rg
2) but also on

the parameters from all of the first-level models (bK,sK
2). However,

if we are only interested in the top or second-level parameters, we

may substitute the summary result from the first level into this two-

level model and marginalise over bK and sK
2 (see Appendix F),

showing that the marginal distribution on bg and rg
2 does not

depend on the original data, but on the summary parameters from

the first level, that is, lbk
and rbk

2 Rbk
:

pðbg; r
2
g; tK j YÞ~

Y
k

fN ðlbk
;Xgkbg; ðr2

bk
Rbk

=skÞ þ r2
gIÞ

�Cðsk ; mbk
=2; mbk

=2Þg1=r2
g ð14Þ

where Xgk is the kth row vector of the second-level design matrix

Xg, and tK is a (K � 1) vector of latent variables sk for k = 1. . .K
introduced for mathematical convenience (see Appendix F).

A special case of Eq. (14) is when the variances, rbk

2 Rbk
, on the

first-level GLM parameters are known with very high degrees of

freedom (mk!l). This is equivalent to p(bkjYk) in Eq. (10) being a

normal distribution instead of a t distribution. In this case, the prior

distribution on tK reduces to a delta function centered on tK = 1

and the joint posterior distribution on the second-level parameters

reduces to:

pðbg; r
2
g j YÞ~

Y
k

fN ðlbk
;Xgkbg; ðr2

bk
Rbk

Þ þ r2
gIÞg1=r2

g: ð15Þ

Eq. (14) (or, in the special case, Eq. (15)) gives us the joint

posterior distributions ofbg, rg
2 and tK. However, as in the first-level

model, we are actually interested in inferring upon the marginal

distribution over the GLM height parameters, bg. This marginal

posterior p(bgjY) cannot be obtained analytically. Therefore, we

consider two approaches, a fast posterior approximation and a slower

but more accurate approach using Markov Chain Monte Carlo

(MCMC) sampling. Crucially, in both approaches, we are going to

assume that p(bgjY) is a multivariate noncentral t distribution:

pðbg j YÞ~
Z

pðbg; r
2
g; tK j YÞdr2

gdtK ð16Þ

cTðbg; lbg
; r2

bg
Rbg

; mbg
Þ ð17Þ

This assumption is crucial to the idea of being able to split

hierarchies into inference on different levels for higher order

models as we shall see in Higher level models. We shall test the

validity of this assumption later. The fast posterior approximation

or MCMC approaches are the means by which we get the

distribution parameters lbg
, rbg

2 Rbg
and mbg

.

Fast posterior approximation

Here we propose a fast but approximate approach for

estimating the distribution parameters, lbg
,rbg

2 Rbg
and mbg

, in Eq.

(16). First, we assume high degrees of freedom at the first level,

that is, sk = 1 for all k. We then obtain a point estimate of rg
2

and use this point estimate to compute a point estimate of bg.

For the details of how we obtain these point estimates r̂2
g and

lbg, see Appendix G.

We then make the assumption that the effect of uncertainty in

rg
2 is the same as the effect of uncertainty in rk

2 in a first-level
model. This means that p(bgjY ) is a multivariate noncentral t

distribution:

N ðbg;b̂g; ðXT
GU

�1XGÞ�1; mÞ; ð18Þ

where U is a diagonal matrix with the kth diagonal element given

by Sk ¼ ðr2
bk

Rbk
=skÞ þ r2

gI.

However, we do not know the degrees of freedom (DOF), m. We

might expect the DOF to be within the range, NK � PG V m V l.

In the validation section, we will look at using m = NK � PG (lower

estimate) and m = l (upper estimate). The accuracy of these

assumptions is examined with simulations in the Artificial data

section.

Markov Chain Monte Carlo

Here, we use Markov Chain Monte Carlo (MCMC) to sample

from the full joint posterior distribution given in Eq. (14). This also

automatically provides us with samples from the marginal posterior

distribution, p(bgjY).
We use single-component Metropolis–Hastings jumps (i.e., we

propose separate jumps for each of the parameters in turn) for all

parameters. We use separate normal proposal distributions for each

parameter, with the mean fixed on the current value and with a

scale parameter rp for the pth parameter that is updated every 30

jumps. At the jth update, rp is updated according to:

r jþ1
p ¼ r j

pR̃
ð1þ Aþ RÞ
ð1þ RÞ ð19Þ

where A and R are the number of accepted and rejected jumps since

the last rp update, respectively, R̃ is the desired rejection rate,

which we fix at 0.5.

We require a good initialisation of the parameters in the model

purely to reduce the required burn-in of the MCMC chains (the

burn-in is the part of the MCMC chain, which is used to ensure that

the chain has converged to be sampling from the true distribution).

To initialise, we use the fast approximation approach described in

Fast posterior approximation.

BIDET

MCMC can be used to directly obtain samples from p(bgjY).
However, we would need to get lots of samples well into the tail of

the distribution, and MCMC sampling is computationally inten-

sive. Hence, we avoid the need for many samples by assuming that

p(bgjY) is a multivariate noncentral t distribution. Recall that

assuming a multivariate noncentral t distribution is also important

to the idea of being able to split hierarchies into inference on

different levels. Therefore, we clean up the samples of the posterior

using Bayesian inference with distribution estimation using a T fit

(BIDET).

BIDET fits a multivariate noncentral t distribution to the

MCMC samples of p(bgjY) as described in Appendix D. Fig. 1

shows the result of using the multivariate noncentral t distribution

fit to an MCMC chain obtained (see Markov Chain Monte Carlo)

on a voxel in data set 2 described in Artificial data.

Contrasts

Whether from the fast approximation approach or from

MCMC plus BIDET, the output from the analysis at any level



Variance group Regressor 1 Regressor 2

1 1 0

1 1 0

1 1 0

2 0 1

2 0 1

2 0 1

Fig. 1. The t fit (in this case one-dimensional) obtained on the MCMC

samples from a voxel in data set 1.
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in the hierarchy gives us a multivariate noncentral t distribution

(Eq. (16)). As in the frequentist framework, we can ask ques-

tions about linear combinations (or contrasts) cTbg of the

parameters in bg.

If c is a P � 1 vector representing a t contrast, we can use Eq.

(16) to give us the univariate noncentral t distribution over cTbg

pðcTbg j YÞ ¼ TðcTbg; c
Tlbg

; r2
bg
cTRbg

c; mbg
Þ ð20Þ

We can then look at the p(cTbg > 0jY). Note that this is equal to
the probability of getting a t value greater than the t statistic:

t ¼ cTlbg

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
�g
cTR�g

c
q

ð21Þ

under a central t distribution with degrees of freedom mb .

g

Variance group Regressor 1 Regressor 2

1 1 1

1 1 1

1 1 1

2 1 �1

2 1 �1

2 1 �1
Higher level models

An increasing number of studies have three levels, in particular,

a within session level, a session level and a subject level. With

multiple sessions for multiple subjects, it becomes possible to

model the between-session variance separately from the between-

subject variance, and hence one can benefit from the improvements

in sensitivity (due to heterogeneity of variance) this produces.

In the Two-level section, we showed that we could infer on the

full two-level model using just the summary result of the first level

without using the data Y. We can use a similar argument to show that

we can infer on a full three-level model using the summary result of

the two-level model (given by Eq. (16)) without using the data Y.

The resulting distribution is similar to that in Eq. (14). Hence, we

similarly assume that the marginal posterior is a multivariate

noncentral t distribution equivalent to Eq. (16), and again we can

use the fast posterior approximation or MCMC approaches to get

the distribution parameters.

Higher level models can be considered using exactly the same

argument. This is because after the first level, outputs and inputs

for subsequent levels can be summarised as a multivariate non-

central t distribution. Hence, the assumption that the marginal

distribution in Eq. (14) is a multivariate noncentral t distribution is
integral to the idea of being able to split inference on multiple-level

models into inference on the different levels. We shall test the

validity of this assumption later.
Multiple group variances

We can use the framework we have described to work with

multiple group variances at any level after the first level. An

example of when this would be useful is when we might expect

different between-subject variances for a patient group and a

control group. We can easily deal with such multiple group

variances if we limit ourselves to design matrices, which are

‘‘separable’’ with respect to the variance groupings.

We define a subdesign matrix as the part of the design matrix

belonging to a group of observations for which we want to have a

separate variance group. A design matrix would be ‘‘separable’’

with respect to the variance groupings if the subdesign matrices

could be inferred upon using separate GLMs to give the same result

as inferring on one GLM using the full design matrix.

We define a ‘‘group regressor’’ as that part of an regressor that

belongs to a particular group variance:
The group regressor for regressor 1 and for group 1 is [1, 1, 1]T.

The group regressor for regressor 1, group 2 is [0, 0, 0]T.

We can check if our design matrix is ‘‘separable’’ by

checking that within each regressor, only one group regressor

has nonzero values in it. An example of a design matrix that

violates this is:
Simulations have shown that if this constraint is not met then

the resulting bg vector is not generally multivariate t distributed.

Whilst MCMC could deal with it, this violation prohibits the use of

BIDET. This would require the use of longer MCMC chains and

would also prohibit carrying the output to higher levels as the

output from a level with these properties could not be summarised

as a multivariate t distribution. Hence, we need in practice to

ensure that our designs are ‘‘separable’’ with respect to the variance

groupings.

These ‘‘separable’’ multiple group variance designs can then be

implemented by inferring on separate GLMs using the fast ap-

proximation or MCMC plus BIDET. The results for different

variance groups are pooled into one multivariate t distribution
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for bg. We can then proceed to the contrast stage and ask questions

within or across variance groupings.
Artificial data

Methods

In the Two-level section, we showed that the two-level model

can be inferred upon using the summary statistics of the first-level

model inference (Eq. (14)). This means that all-in-one and split-level

inferences are equivalent when we infer on the top-level regression

parameters. Here we use four different null artificial data sets from

the two-level model for 400 voxels to validate the fast approxima-

tion and MCMC or BIDET inference we perform on Eq. (14).

Inference approaches

The different inference approaches are all different ways of

obtaining a z statistic for the t contrast of interest. The different

inference approaches considered are as follows:

� MCMC: We sample from p(bgjY) to get an MCMC chain of

200,000 samples (with a burn-in of 1000 samples) using the

approach described in Markov Chain Monte Carlo, we directly

calculate the p(cTbg > 0jY) from the MCMC samples of the

marginal posterior of p(cTbgjY). We can then use a p to z

transform to calculate a z statistic at each voxel.
� BIDET: We fit a noncentral t distribution to an MCMC chain of

200,000 samples (with a burn-in of 1000 samples) using the

approach described in BIDET. We can then use a t to p to z

transform to calculate a z statistic at each voxel.
� LOWER: We use the lower bound from the fast approximation

approach described in Fast posterior approximation to get an

approximate noncentral t distribution. The lower bound is

obtained when we assume DOF, m = Ng � PG. We can then use

a t to p to z transform to calculate a z statistic at each voxel.
� UPPER: We use the upper bound from the fast approximation

approach described in Fast posterior approximation to get an

approximate noncentral t distribution. The upper bound is

obtained when we assume DOF, m = l.
� OLS: This is the standard frequentist approach (described at the

start of Inference section) of estimating the total mixed effects

variance. This ignores rbk

2 . Using the total mixed effects

variance estimate, frequentist theory gives that the normalised

OLS estimate of cTbg is t distributed with DOF, m = Ng � PG.

We can then use a t to p to z transform to calculate a z statistic at

each voxel.

z Statistics

We want to be able to compare the resulting inference of these

different approaches. It is difficult to compare different t statistics

with different DOF. Therefore, for each of the different inference

approaches, we convert to the probability of the contrast being

greater than zero. This provides us with a measure that we can

compare directly between the different approaches. We represent

this probability as a z statistic by ensuring that the area under one

tail of a standardised (zero mean and standard deviation of one)

normal distribution corresponds to that probability. In Relating

fully Bayesian inference to frequentist inference, we will explore

the possibility of using these z statistics to mimic null hypothesis

frequentist inference.
Relating the MCMC approach to OLS

It is important to appreciate that there are two different ways in

which the z statistic can be changed between OLS and MCMC. The

first was demonstrated in Beckmann et al. (2003), in that by taking

into account lower level covariances and their heterogeneity, a

substantial increase in higher level z statistic is possible. This is

because the heterogeneity of the lower level covariances is effec-

tively used to weight the summary statistic data to give more

efficient estimates (resulting in reduced top-level regression param-

eter variance). This is analogous to the way in which prewhitening

is used in first-level analyses to weight the regression parameter

estimation to give more efficient estimators (Woolrich et al., 2001).

Beckmann et al. (2003) were unable to demonstrate the second

way in which the z statistic can be changed between OLS and

MCMC because they assumed that variances were known. In this

paper, when we estimate the higher level variances, they are

constrained to be positive. This overcomes the well-known ‘‘neg-

ative variance’’ problem in OLS (Leibovici and Smith, 2001) by

forcing the total variance to be greater than it would be in the OLS

case. This increased variance translates into lower z statistics in

voxels that would have suffered from this problem.

In summary, we have two ways in which z statistics can change

between OLS and MCMC. Firstly, they can increase due to

increased efficiency from using lower level variance heterogeneity.

Secondly, they can decrease due to the higher level variance being

constrained to be positive.

Data sets

To avoid unnecessary consideration of first-level design matri-

ces and because we are only looking to validate the inference on

Eq. (14), we do not generate artificial first-level data Y. Instead, we

directly generate second-level summary ‘‘data’’, lbk
, via Eq. (14).

To do this, we specify that we want null data by setting bg = 0 and

then choose values for rbk
and rg. As a result, lbk

, mk and rbk
form

the summary statistic data we then use in the second-level

inference.

To generate artificial data, we need to decide on our values for

rbk
(for k = l. . .k) and rg. Our choice is governed by the variance

ratios we want between the top level and the lower levels. In

relating the MCMC approach to OLS, we discussed two ways in

which we would expect differences between OLS and MCMC

inference. However, we would expect this difference in z statistics

to be less and less substantial as the top-level variance dominates

over the lower level variance. Beckmann et al. (2003) demonstrat-

ed that at a 10:1 ratio of between-session or -subject variance to

within-session variance, the increase in higher-level z statistic (due

to taking into account variance heterogeneity) is negligible. One of

our data sets (data set 4) utilises a 10:1 variance ratio to explore if

the combination of the two possible effects discussed in Relating

the MCMC approach to OLS shows any difference in z statistics

between OLS and MCMC.

However, we also consider variance ratios of the order of 1:1.

The widely reported existence of the negative variance problem in

FMRI (Leibovici and Smith, 2001; Worsley et al., 2002), along

with the effects seen in the real FMRI data later in this paper,

demonstrates that such low group to first-level variance ratios do

exist in FMRI data. We need such a ratio to reproduce data that will

suffer from the well-reported ‘‘negative variance’’ problem when

using traditional OLS estimation (Leibovici and Smith, 2001).

Furthermore, we need to consider the case of three-level hierar-

chies, which are popular in neuroimaging studies (e.g., hierarchies

ge 21 (2004) 1732–1747
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containing within session levels, session levels and subject levels).

When one uses the summary statistics from the output of the

second level to infer on the third level, the variance ratio we are

concerned with is between session variance to between subject

variance, for which a ratio of the order of 1:1 is realistic.

The four data sets are as follows:

� Data set 1: A group mean design, with NK = 8 subjects and rbk

2 c
0, rg

2 = 1. The second level design matrix is:Xg = [1, 1, 1, 1, 1, 1,

1, 1]T with t contrast c = [1].
� Data set 2: A group mean design, with NK = 8 subjects and rbk

2 f
uniform (0.1, 1.9), vk = 8 and random effects variance rg

2 = 1. The

design matrix and t contrast is the same as for data set 1.
� Data set 3: A paired t test design with five subjects under two

conditions (giving NK = 10) and rbk

2 f uniform (0.1; 1.9), vk =

8 and random effects variance rg
2 = 0.5. The second level design

matrix is:

Xg ¼

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1

�1 1 0 0 0 0

�1 0 1 0 0 0

�1 0 0 1 0 0

�1 0 0 0 1 0

�1 0 0 0 0 1

2
666666666666666666666666666666664

3
777777777777777777777777777777775

with t contrast c = [1, 0, 0, 0, 0, 0]T.
� Data set 4: A group mean design, with NK = 8 subjects and

rbk

2 cf uniform (0.1, 1.9), rg
2 = 10. The second level design

matrix is: Xg = [1, 1, 1, 1, 1, 1, 1, 1]T with t contrast c = [1].

Results

Fig. 2 show box plots of the difference in z statistics between

those obtained from a long MCMC chain of 200,000 samples and

those obtained from the different inference approaches considered.

The intention is to consider the inference from a very long MCMC

time series as a ‘‘gold standard’’. To help validate this assumption,

the first box plot (labelled MCMC) compares this ‘‘gold standard’’

inference with another equally long MCMC chain but with a

different random seed. This allows us to assess the inaccuracies in

the ‘‘gold standard’’ due to the finite length of the MCMC chain. In

all four data sets, the difference in z statistics for this is of the order

of 0.01.

The second box plot (labelled BIDET) compares our ‘‘gold

standard’’ to the inference obtained when we fit the noncentral

multivariate t distribution to the long MCMC chain with a

different random seed. This allows us to validate one of the

strongest assumptions that we make in this paper. That is that
the marginal posterior in Eq. (14) is a noncentral multivariate t

distribution. This is crucial to the idea of being able to split

hierarchies into inference on different levels. By making this

distributional assumption, it also allows us to infer on shorter

MCMC chains and gives us some basis for the fast approximation

approach. This assumption is well supported by these BIDET box

plots with the difference in z statistics being of the order of 0.01

for all four data sets.

Fig. 2 also shows box plots for the fast approximation

approaches. We show box plots for the upper bound (labelled

UPPER) and lower bound (labelled LOWER). Of particular

interest is how good these bounds are at actually bounding the

‘‘gold standard’’ MCMC. Hence, a third box plot (labelled

BOUND) shows the how far outside the bound the ‘‘gold

standard’’ is. This shows a z statistic difference of up to 0.2 for

data set 2. This z statistic difference of up to 0.2 between the fast

approximation bounds and the MCMC ‘‘gold standard’’ will be

used later as part of the HYBRID inference approach (see Hybrid

inference approach).

The final box plot shows the traditional inference approach of

ignoring the known fixed effects variance estimating the total

mixed effects variance and using OLS to perform inference

(labelled OLS). Because this ignores the fixed effects variance,

this makes this approach the ‘‘gold standard’’ for data set 1, in

which rbk

2 c 0. Indeed this is supported by the box plot. However,

for data sets 2 and 3, rbk

2 > 0 and varies over k. For these data sets,

OLS will give unbiased statistics, but very inefficient statistics as

the rbk

2 information is ignored. These box plots illustrate the

difference in z statistics between OLS and the ‘‘gold standard’’

due to this inefficiency. In data set 4, rbk

2 is sufficiently small

compared to rg
2 so that the differences between OLS and MCMC

are negligible.

Fig. 3 shows the z statistics obtained for 20 voxels from the

three data sets for the inference approaches of UPPER, LOWER,

BIDET and OLS. For data set 1, the correspondence of OLS,

LOWER and BIDET is reiterated. For data sets 2 and 3, the

difference between BIDET and OLS is illustrated, as is the small

inaccuracy of the UPPER and LOWER fast approximation

approaches compared with BIDET.

Fig. 4 shows the histograms for the four different data sets of

the degrees of freedom (DOF) obtained at each voxel from fitting

the noncentral t distribution to an MCMC chain of 200,000

samples from the marginal posterior, p(cTbgjY), as part of BIDET.
For data set 1, we know that the OLS solution is the correct one

and that the DOF, m = 7. In data set 4, rbk
is sufficiently small

compared to rg so that the differences between OLS and MCMC

are negligible and the range of DOF match those found in data set

1. Fig. 4 shows that BIDET correctly finds the DOF as being seven

for the majority of voxels in data set 1. However, for data sets 2

and 3, the OLS DOF will be m = 7 and 4, respectively. We should

not expect BIDET to have the same DOF values as this. Indeed the

histograms show that the DOF obtained from BIDET varies from

about these OLS DOF values to values up to about 60 or 70 DOF.

Without using BIDET, there would be no way of knowing, for a

particular voxel, the required DOF.

Fig. 5 shows box plots of the difference in z statistics between

those obtained from a long MCMC chain of 200,000 samples and

those obtained from using BIDET on MCMC chains of varying

sample sizes. This illustrates the need for an MCMC chain of at

least 20,000 samples to achieve accuracies of the order of 0.02 in

z statistics.



Fig. 2. Box plots over 400 voxels showing the z statistics obtained from a long MCMC chain of 200,000 samples minus the z statistics obtained from the

different inference approaches considered. The box has lines at the lower quartile, median and upper quartile values. The length of the whiskers is 1.5 times the

interquartile range. The box plots labelled (MCMC) correspond to the difference in z statistics between those obtained from the 200,000 sample MCMC chain

and those obtained from another 200,000 sample MCMC chain with a different random seed. The box plots labelled (BOUND) correspond to how far outside

tistics obtained from the 200,000 sample MCMC chain lie.
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Relating fully Bayesian inference to frequentist inference

We have some choices for how we use the posterior distribution

p(cTbgjY). We could simply use the posterior, p(cTbgjY), to build

up posterior probability maps representing the probability of

the fast approximation bound (described as UPPER and LOWER) the z sta
Fig. 3. Plots showing the z statistics for 20 voxels obtained from differ
activation at each voxel (Friston and Penny, in press). Another

possibility is the use of (spatial) mixture modelling (Everitt and

Bullmore, 1999; Hartvig and Jensen, 2000; Woolrich et al., 2003)

to classify voxels as activating and nonactivating. We do not

attempt to explore or discuss the relative merits of these approaches
ent inference approaches for the four different artificial data sets.



Fig. 4. Histograms over 400 voxels of the DOF estimated by BIDET for the different data sets for the four different artificial data sets.
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in this paper. Here, we consider another possibility of the inference

produced if we mimic null hypothesis frequentist inference [i.e.,

controlling a false positive rate (FPR)] by assuming that under the

null hypothesis, the z statistics, which the fully Bayesian BIDET

approach produces, are standardised (zero mean and standard

deviation of one) Normally distributed.

To examine this possibility, Fig. 6 shows the log probability-

log probability plots for the four different data sets for BIDET and

OLS. These are plots of the nominal or theoretical frequentist FPR

against the probabilities obtained empirically from our four null

artificial data sets. For all four data sets, OLS does, as expected,
Fig. 5. Box plots over 400 voxels showing the difference in z statistics

between those obtained from a long MCMC chain of 200,000 samples and

those obtained from using BIDETon MCMC chains of varying sample sizes

on data set 1. The box has lines at the lower quartile, median and upper

quartile values. The length of the whiskers is 1.5 times the interquartile

range.
produce a log probability plot that matches the nominal or

theoretical frequentist FPR. However, this is not true for the

BIDET approach.

Data sets 1 and 4 with small rbk
compared to rg give close to the

same inference using BIDET as when using OLS. Hence, we would

expect the log probability that BIDET produces to match the

nominal or theoretical frequentist FPR. Fig. 6 demonstrates that this

is true.

However, for data sets 2 and 3 (rbk

2 is of the same order as rg),

BIDET produces different results to OLS. The empirical log

probabilities are lower than the nominal or theoretical FPR. Recall

from the Relating the MCMC approach to OLS section that we have

two ways in which we expect z statistics to change between OLS

and MCMC. Firstly, they can increase due to increased efficiency

from using lower-level variance heterogeneity. Secondly, they can

decrease due to the higher-level variance being constrained to be

positive. The first of these effects will introduce no bias into the p-p

plots. Hence, only the second of these effects will be visible and the

p-p plots for data sets 2 and 3 in Fig. 6 are consistent with this.

This means that whilst we produce more accurate estimates of

the total mixed effects variance, it also means that the z statistics

resulting from BIDET are not standardised normally distributed

under the null hypothesis. This is not a problem if we just report

posterior probability maps or use mixture modelling.

However, if we do choose to proceed assuming that the z

statistics from BIDET are standardised normally distributed since

the empirical log probabilities are lower than the nominal or

theoretical frequentist FPR, then the validity of our statistics will

not be violated. In other words, the z statistics from BIDET are

on average conservative. The disadvantage of this is that we will

lose some sensitivity when compared with using the unknown,

correct null distribution. The advantage is that we can utilise

cluster-based inference techniques on the z statistic maps,



Fig. 6. Log probability-log probability plots over 400 voxels for the four different data sets for BIDET and OLS. These show plots of (nominal or theoretical)

FPR against that obtained experimentally from our four null artificial data sets. The straight diagonal line shows the result for what would be a perfect match.

Fig. 7. Cluster thresholded (z > 2.3, P < 0.01) group activation from the INDEX data set. (Top) The OLS approach, and (bottom) the HYBRID approach.

Fig. 8. Cluster thresholded (z > 2.3, P < 0.01) group activation from the SEQUENTIAL data set. (Top) The OLS approach, and (bottom) the HYBRID

approach.
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such as Gaussian Random Field Theory (Poline et al., 1997;

Worsley, 2001).
FMRI data

Methods

Here, we consider two different FMRI data sets, both of which

are simple motor tasks:

� INDEX: index finger vs. rest tapping task.
� SEQUENTIAL: sequential finger tapping vs. index finger

tapping.

Each data set consists of single sessions for eight different

subjects. In both data sets, the overall aim is to infer the group

means at the top level. For each subject, echo planar images (EPI)

were acquired using a 3-T system with TR = 3 s, time to echo

(TE) = 30 ms, in-plane resolution 4 mm and slice thickness 7 mm.

The first four scans were removed and the data were motion

corrected using MCFLIRT (Jenkinson et al., 2002) and high-pass

filtered as described in (Woolrich et al., 2001).

The overall model for this group experiment consists of two

levels. The first level is a standard FMRI GLM with a design

matrix for subject k, Xk, containing regressors modelling the

response to the task within each subject’s data set. The second

level is a GLM, which models the group mean of the individual

subject’s responses to the tasks, via a design matrix Xg = [1, 1, 1, 1,

1, 1, 1, 1]T.

To infer on this two-level model, we utilise the summary

statistic approach we have laid out in this paper. To do this, we

firstly produce the multivariate noncentral t distribution summary

statistics of Eq. (16) using a first-level analyses of standard

generalised least squares (GLS). This GLS analysis was performed

using FEAT (FSL, n.d.). FEAT performs voxel-wise time series

statistical analysis using local autocorrelation estimation to pre-

whiten the data (Woolrich et al., 2001).

To infer the group mean, we now need to infer on the

marginal posterior, p(bgjY), using the multivariate noncentral t

distribution summary statistics obtained from these first-level

analyses (Eq. (14)).

To do this, we use two different approaches. Firstly, the OLS

approach as described in Artificial data. Secondly, a hybrid

approach that provides a compromise between the fast posterior

approximation approach and the slower but more accurate ap-

proach of using Markov Chain Monte Carlo (MCMC) sampling

and the fitting of a noncentral multivariate t distribution BIDET.

The HYBRID approach is now described in detail. It is this

which is implemented as the FMRIB’s local analysis of mixed

effects (FLAME) C++ program used for higher level analyses in

FEAT (part of FSL v3.1).
Fig. 9. (Left) Number of suprathreshold voxels and (right) maximum z statistic fr

inference techniques OLS and HYBRID.
Hybrid inference approach

Firstly, we can determine bounds on the accuracy of the fast

approximation’s z statistic bounds by using artificial data with

‘‘worst case scenario’’ variance components by comparing the

LOWER and UPPER inference approaches with BIDET (as

described in Artificial data). For the design matrices we are using

here, the corresponding artificial data set we need to use is data set

1 from Artificial data.

We can then run the fast approximation approach on our real

FMRI data first and subsequently only run the computationally

expensive MCMC sampling (with 30,000 samples and a burn-in of

1000 samples) and the fitting of a noncentral multivariate t

distribution BIDET on voxels at which the desired z threshold lies

within the estimated bounds.

This hybrid approach takes approximately 1 h (for the data sets

considered here) on a 2-GHz Intel PC on a full volume.

Thresholding

Using HYBRID, we obtain the marginal posterior, p(bgjY), as a
multivariate noncentral t distribution. We can then use a contrast

c = 1 to produce p(cTbgjY). As discussed in Relating fully

Bayesian inference to frequentist inference, we have some choices

as to how we infer on this posterior distribution. Here we take the

option of performing a t to p to z transform and mimicking a null

hypothesis frequentist inference (i.e., controlling a FPR) by as-

suming that under the null hypothesis, the z statistics produced are

standardised normally distributed (see Relating fully Bayesian

inference to frequentist inference). One advantage of doing this

is that we can utilise Gaussian Random Field Theory (GRFT)

(Poline et al., 1997; Worsley et al., 1992). Here we use GRFT to

threshold the z statistic maps and generate activation clusters

determined by z > 2.3 with a significance threshold of P = 0.01.

Results

Figs. 7 and 8 show cluster-thresholded (z > 2.3; P < 0.01) group

activation for the two motor tasks. Fig. 9 shows the number of

suprathreshold voxels and the maximum z statistics for the two

tasks. Fig. 7 shows the results from index finger tapping against rest

(INDEX data set). There is a general decrease in z statistics in

potentially activating voxels. This demonstrates the dominance of

one of the two possible effects of incorporating first-level variances

into the second level estimation process—that is, we get an increase

in estimated group variance, rg, due to it being constrained to be

positive. Fig. 8 shows the results of a contrast of sequential finger

tapping vs. index finger tapping (SEQUENTIAL data set). There is

a general increase in z statistics in potentially activating voxels.

This demonstrates the dominance of the other possible effect of

incorporating first-level variances into the second level estima-

tion process—that is, we get increased efficiency in parameter

estimation due to the use of lower level variance heterogeneity.
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Conclusions

We have shown how multilevel hierarchical GLM inference can

be split into different levels with the summary statistics of a

multivariate noncentral t distribution being passed between the

levels. This was achieved by formulating the model in a fully

Bayesian framework and using reference analysis to drive our

crucial choice of priors (see First level and Two-level). Using this

framework, we have proposed two approaches to inferring at the

top level. A fast approximation to the marginal posterior and a

slower approach utilising Markov Chain Monte Carlo (MCMC)

followed by a multivariate noncentral t distribution fit to the

MCMC chains. These inference approaches are applicable whether

we are attempting to infer using the all-in-one approach or the

summary statistic split-model approach. We have validated the

crucial assumption of the marginal distribution of the GLM

regressions parameters being a multivariate noncentral t distribu-

tion at levels higher than the first using artificial data. The artificial

data also demonstrates the difference between a standard OLS

approach and the approach proposed in this paper. We have also

shown results on FMRI data.
Discussion

When we attempt to infer on mixed effects models, we need to

deal with the fact that the variance components are unknown.

Classically, variance components tend to be estimated separately

using iterative estimation schemes employing ordinary least

squares (OLS), expectation maximisation (EM) or restricted max-

imum likelihood (ReML), see Searle et al. (1992) for details. As an

example of a non-Bayesian approach, Worsley (2001) estimates

variance components at each split level of the model separately. At

higher than first levels, they propose EM for estimation of the

random effects variance contribution to reduce bias in the variance

estimation—a potential problem in higher level analyses if simple

OLS were used. Positivity of the random-effects variance, avoiding

what is known as the ‘negative variance problem’ (where mixed-

effects variance estimates are lower than fixed-effects variances

implying negative random-effects variance Leibovici and Smith,

2001), is partially addressed but not strictly enforced.

However, only in certain special cases (not including the model

presented here) is it possible to derive analytical forms for the null

distributions required by frequentist statistics. In the absence of

analytical forms, frequentist solutions rely on null distributions

derived from the data using such techniques as permutation tests

(Nichols and Holmes, 2001). However, these lose the statistical

power gained from educated assumptions about, for example, the

distribution of the noise and limit inference to the number of

available points in the empirical null distribution. Bayesian statis-

tics gives us a tool for inferring on any model we choose and

guarantees that uncertainty will be handled correctly.

Friston et al. (2002) have proposed a parametric empirical-

Bayesian (PEB) approach for estimation of the all-in-one multi-

level model. Unlike Worsley (2001), they relate the parameters of

interest to the full set of original data, that is, they do not utilise the

‘summary statistics’ approach. Conditional posterior point esti-

mates are generated using EM, which causes posterior probability

maps.

Working in a fully Bayesian reference analysis framework, we

have the capacity to infer either using the summary statistic split-
level (Worsley) approach or the all-in-one (Friston et al., 2002)

approach. However, all-in-one inference is not part of this paper

and is an area of future work. The difference between an all-in-one

inference based on the work described in this paper and the PEB

work of (Friston et al., 2002) is that they assume a multivariate

Gaussian marginal posterior for the regression parameters (and

then heuristically convert it to a t statistic), whereas we work in a

fully Bayesian framework using reference priors that we can

validate as giving a multivariate t distribution with certain degrees

as freedom using MCMC. Without reference priors, Friston et al.

(2002) have nothing principled to drive the important choice of

prior at the top level and as a result assume flat priors.

Importantly, one of the results demonstrated in this paper is

that the inference we would obtain at the top level will be

approximately the same regardless of whether we infer using

the summary statistic split level (Worsley, 2001) or the all-in-one

approaches (Friston et al., 2002) (assuming that first-level tempo-

ral autocorrelations are effectively known). However, it is very

important to realise that there will be a difference if we look to

infer at intermediate levels in the model. This is because in the all-

in-one approach, the regression parameters at these intermediate

levels will be regularised by the levels above in the hierarchy,

whereas in the split-level approach they will not. Whether or not

an experimenter would like to infer on, for example, a subject in

isolation or on a subject in the context of the group of which it is a

member, is a choice for the experimenter to make.
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Appendix A. Gamma distribution

x has a two-parameter gamma distribution, denoted by Ga(a, b),

with parameters a and b, if its density is given by:

Cðx; a; bÞ ¼ ba

CðaÞ x
a�1e�bx ð22Þ

where C(a) is the single-parameter Gamma function. Note that a

two-parameter gamma distribution has mean = a/b and variance =

a/b2.
Appendix B. Multivariate normal distribution

x is a P � 1 random vector and has a multivariate normal

distribution, denoted by N(l,r2R), if its density is given by:

N ðx; l; r2RÞ

¼ 1

ð2pÞP=2 j r2R j1=2
exp � 1

2r2
ðx� lÞTR�1ðx� lÞ

� 
ð23Þ

The multivariate normal distribution has mean = l and covari-

ance = r2R.
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Appendix C. Multivariate noncentral t distribution

x is a P � 1 random vector and has a multivariate noncentral t

distribution, denoted by t(l,r2R,v), if its density is given by:

T ðx; l; r2R; vÞ ¼ C½ðm þ PÞ=2
ðpmÞP=2 j r2R j1=2 C½m=2

� 1þ ðx� lÞTR�1ðx� lÞ
r2m

 !�ðmþPÞ=2

ð24Þ

where C(a) is the single-parameter Gamma function. The noncen-

tral t distribution has mean = l and covariance = r2Rm / (m � 2) for

m > 2.

We can represent a multivariate noncentral t distribution using a

two-parameter gamma distribution and a multivariate normal

distribution in a Bayesian framework. If we introduce a variable

s and specify a joint posterior over x and s as:

pðs; x j l; r2R; mÞ~pðx j s; l; r2RÞpðs j mÞ

x j s; l; r2RfNðl; ðr2R=sÞÞ

s j mfGaðm=2; m=2Þ

ð25Þ

then the marginal posterior for x is a multivariate noncentral t

distribution, that is,

pðx j l; r2R; mÞ ¼
Z

pðs; x j l; r2R; mÞds

x j l; r2R; mftðl; r2R; mÞ ð26Þ

Appendix D. Multivariate noncentral t distribution fit

In this section, we describe how the multivariate noncentral t

distribution fit is performed in BIDET.

Assume that we have P � NJ matrix, x, with elements, (xjp),

where j = 1 . . . NJ indexes samples and P = 1 . . . P indexes

parameters. The task is to fit to these samples a multivariate

noncentral t distribution, t(l,r2R,m) (as described in Appendix C).

In BIDET, we constrain the mean of the multivariate noncentral

t distribution, lbg
, to be equal to that from the fast posterior

approximation for lbg
described in Fast posterior approximation.

If we are not using this constraint, then we can set the mean l to

the sample mean, that is,

lp ¼
1

NJ

X
j

xjp ð27Þ

We can also directly estimate the normalised covariance R
using the sample covariance, R̂:

R̃ ¼ R̂= j R̂ j1=P

R̂ ¼ ðx�MÞðx�MÞT=ðNJ � 1Þ ð28Þ

where M = {l, l, . . ., l}T.
We still need to estimate r2 and m. Fortunately, we can represent

a multivariate noncentral t distribution using a two-parameter

gamma distribution and a multivariate normal distribution in a

Bayesian framework by introducing hidden variables si (see
Appendix C). With hidden variables, we can use the Expection–

Maximisation (EM) algorithm. In the E-step, we obtain the

expected value of the hidden variables, sj:

EsjjmðtÞ;r2
ðtÞ;x

½sj ¼
r2
ðtÞðmðtÞ þ PÞ
mðtÞr2

ðtÞ þ sj
ð29Þ

where:

sj ¼ ðxj � ljÞT R̃�1ðxj � ljÞ ð30Þ

and then in the M-step, we can minimise the joint posterior over m,
r2 given sj(t) = Esjjm(t),r(t)

2 ,x[sj] to get updates for m, r2 as:

r2
ðtþ1Þ ¼

1

NJP

X
j

sjðtÞsj

mðtþ1Þ ¼
2

1� r2
ðtÞ=

1

NJ � 1

X
j
sj

�  ð31Þ

Convergence normally occurs after about 10 iterations. To be

conservative, we therefore use 50 iterations.
Appendix E. Determining reference priors

Here we show how we determine the reference prior for a

vector of parameters h for a model with likelihood p( yjh). This is
taken from Section 5.4.5. of Bernardo and Smith (2000):

The Fisher information matrix, H(h), is given by:

HðhÞ ¼ �Eyjh
B
2

BhiBhj
logpðy j hÞ

� �
ð32Þ

For the models in this paper, the Fisher information matrix,

H(h), is block diagonal:

HðhÞ ¼

h11ðhÞ 0 : : : 0

0 h22ðhÞ 0 ]

] 0 O 0

0 : : : 0 hmmðhÞ

2
666666664

3
777777775

ð33Þ

and we can separate out the block hjj(h) as being the product:

fhjjðhÞg1=2 ¼ fjðhjÞgjðh�jÞ ð34Þ

where fj(hj) is a function depending only on hj and gj (h�j) does not

depend on hj. The Berger–Bernardo reference prior is then given

by:

pðhÞ~
Ym
j

fjðhjÞ ð35Þ

Note that this approach yields the Jeffreys prior in one-dimen-

sional problems.
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Appendix F. Marginalising over (bK;rK
2) in the two-level model

From the two-level model the full joint posterior distribution is

(Eq. (12)):

pðbg;s
2
g;bK ;s

2
K jYÞ~

Y
k

fpðYk jbk ;s
2
kÞg

�pðbbK jbg;s
2
gÞpðbg;s

2
g;s

2
KÞ; ð36Þ

where the prior is the reference prior for this full two-level model

(Eq. (13)):

pðbg;s
2
g;s

2
KÞ ¼

1

r2
g

Y
k

1

r2
k

: ð37Þ

If we marginalise out sK
2 , then we get:

pðbg; r
2
g;bK jYÞ~

Y
k

Z
pðYk jbk ; r

2
kÞ=r2

kdr2
k

� �

�N ðbbK ;Xgbg; r
2
gIÞ1=r2

g ð38Þ

and then substitute in the summary result of the first-level model in

isolation (Eq. (10)):

pðbg; r
2
g;bK jYÞ~

Y
k

fT ðbk ;mbk
;s 2

bk
Sbk

;nbk
Þg

�N ðbbK ;Xgbg; r
2
gIÞ1=s2

g: ð39Þ

We can represent a multivariate noncentral t distribution using a

two-parameter Gamma distribution and a multivariate normal

distribution (see Appendix C). This is achieved by introducing a

parameter sk for each vector bk:

pðbg; r
2
g;bK ; tK jYÞ~

Y
k

fN ðbk ; lbk
; ðr2

bk
Rbk

=skÞÞ

�C ðsk ; mbk
=2; mbk

=2ÞgN ðbbK ;Xgbg; r
2
gIÞ1=r2

g: ð40Þ

Writing N(bK;Xgbg,rg
2I) = CkN (bk;Xgkbg,rG

2 I), where Xgk is

the kth row vector of the second-level design matrix Xg, we can

now easily integrate out bk for all k to give:

pðbg; r
2
g; tK j YÞ~

Y
k

fN ðlbk
;Xgkbg; ðr2

bk
Rbk

=skÞ þ r2
gIÞ

�Cðsk ; mbk
=2; mbk

=2Þg1=r2
g ð41Þ

where tK is a (K � 1) vector of the variables sk for k = 1 . . ., K.
Appendix G. Fast approximation point estimates

Here we describe how we obtain the point estimates of rg
2 and

bg for use in the fast approximation approach described in Fast

posterior approximation. We start by rewriting Eq. (14) as:

pðbg; r
2
g; tK j YÞ ¼ NðlbK

;XGbg;UÞ1=r2
g

U ¼

S1 0 : : : 0

0 S2 0

] O ]

0 : : : 0 SN

2
666666664

3
777777775

Sk ¼ ðr2
bk

Rbk
=skÞ þ r2

gI ð42Þ

Point estimate of rg
2

We get a point estimate of rg
2 by finding the maximum a

posterior (MAP) over the marginal posterior distribution

p(rg
2,tKjY ). If we marginalise out bg, then the marginal posterior

is:

pðr2
g; tK j YÞ ¼j U j�1=2j XT

GU
�1XG j�1=2

�exp � 1

2
ðmT

bK
U�1mbK

� b̃T
g XT

GU
�1XGb̃gÞ

� �

�1=r2
g ð43Þ

where

b̃g ¼ ðXT
GU

�1XGÞ�1XT
GU

�1mbK
ð44Þ

We then assume sk = 1 and look to find the MAP for rg
2.

However, there is a question of parameterisation. The mode we get

will depend on the parameterisation we use. For example, we could

look to maximise with respect to rg
2, rg, log(rg

2) or /g = 1/rg
2, etc.,

all of which will give us different MAPs. Note that as we

reparameterise, the reference prior might change but the reference

posterior always stays the same, see Bernardo and Smith (2000).

Hence, a natural way to reparameterise such that the parameter we

use gives us a uniform reference prior.

The parameterisation that gives us a uniform reference prior is

h = log(rg
2). Hence, we need to solve:

ĥ ¼ argmax
h

pðr2
g j Y; tK ¼ 1Þ ð45Þ

where p(rg
2jY, tK = 1) is the marginal in Eq. (43) with tK = 1. To

solve for ĥ using this equation, we use Brent’s (1973) algorithm.

We can then easily convert from ĥ to r̂2
g .
Point estimate of bg
2

We approximate b̂ g using the point estimate r̂2
g and tK = 1:

b̂ ¼ argmax
bg

pðbg j Y; r2
g ¼ r̂2

g; tK ¼ 1Þ ð46Þ

where p(bgjY, rg
2 = r̂2

g, tK = 1) is Eq. (15) with rg
2 = r̂2

g and tK = 1.

The solution to this is:

b̂g ¼ ðXT
GU

�1XGÞ�1XT
GU

�1mbK
ð47Þ

with U as in Eq. (15), but with Sk = (rb
2 Rb ) + r̂2

g I.
k k
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