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Motivation:
Imaging GenetiCS | Brain Phenotype h2

Whole brain volume 0.78

Drug Discovery Total gray matter volume  0.88

Total white matter volume 0.85

Glahn, Thompson, Blangero. Hum Brain Mapp 28:488-501, 2007

Brain structure heritable
Objective, reproducible phenotype

— Important in psychiatry, where Thickness of Cortical GM (r?)
non-imaging measures are Unrelated Fraternal identical

subjects (reference) twins (DZ) twins (MZ)

coarse, with poor reproducibility

Sensitive

— Brain anatomy/function closer to S g __
dlsease prOCeSS than Other Thompson et al, Nature Neuro, 4(12):1253-1258,. 2001
measures

Use to collaborate other findings
— Use brain imaging to build
confidence in marginal finding
from whole-genome analyses

Heritability of GM Thickness
(h? & corrected P-value)
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ha(0.0)=2(ryz(0.0)-rpz(0.0) | = p(h%(¢,0))
Thompson & Toga, Annals of Medicine 34(7-8):523-36, 2002
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Types of Imaging Genetics Analyses

* Brain Imaging already high-dimensional
= 100,000 voxels
— Highly correlated
* Genetic data also high-dimensional

= 20 million known SNPs

— The 0.5-1m tagging SNPs typically used
are lightly correlated

= 30,000 genes
* How to deal with all this multiplicity!*!



Types of Imaging Genetics Analyses

400,000 SNPs

. Candidate SNP - :
— Traditional imaging
analysis w/ SNP ]
predictor ¥

400,000 SNPs

< -
h »
A
v

100,000
Voxels

* Region of Interest
or 1 # summary

— Traditional Whole-
Genome Analysis

100,000
Voxels

400,000 SNPs

* \Whole-Brain,
Whole-Genome

100,000
Voxels




Whole Brain, Candidate SNP
Analyses

* One Genetic Marker
selected a priori

— Either single SNP, or single
variant of a gene

 Example

— VBM Association of GM & . . ™

ApoE ¢4 in Mild AD

— Filippini et al (2009).
Anatomically-distinct genetic
associations of APOE &4 allele load with regional
cortical atrophy in Alzheimer's disease.
Neurolmage 44:724—-728




Imaging ROI, Whole Genome
Analyses

* One Imaging phenotype selected a priori

— Either a ROl value (e.g. % BOLD change) or
some single-number summary (e.g. total
brain GM) o

Chrom Position GeneSymbol Alleles Minor Adj Geno
allele Log P-
frequency  value

 Example
- WGA

Brain parenchymal volume

A afi 1s4866550 5 3361312 IRX1 /T 032 6.06
SSociation rs10078091 5 25530762 CDHIL0 AIG 027 5.91
IN MS, N=794 .50 20 14762000 co0mfiss T 033 5.73
: 4473631 4 174876499 MORF4  A/C 022 5.55

— Total brain | o _
rs1869410 2 5207954  SOXI11 /T 028 5.40
volume results oo 12 smews met 1o o aa

- NO GWA Baranzini et al. (2009). Genome-wide association analysis of

. susceptibility and clinical phenotype in multiple sclerosis. Human
Sign. Molecular Genetics 2009 18(4):767-778.



Imaging ROI, Whole Genome

Overview of Chr3

EHHHHHHHHHHHH
An al S e S OM 0M  20M  30M  40M  5OM 60M  7OM  BOM  90M  100M 11
y e (O LA (0 W W D100

76,983K 77,460K 77,937K

« None known that use no-dimension st
reduction

— Typically, reduce imaging dim ] ‘
— Set of comprehensive ROI's 00-

— Reduced resolution voxel-wise analysis

Log(P)

« Example = e
— Schizophrenia WGA with %BOLD fMRI T
quantitative trait (QT) B HH
« n=64 SCZ, n=74 matched controls R B 7

— QT is % BOLD in DLPFC for Sternberg
Item Recognition Paradigm

« Tested for QT x {NC,SCZ} interaction

— Found weak evidence for six genes at
a<106 (ROBO1-ROBO2, TNIK,
CTXN3-SLC12A2, POU3F2 TRAF, anc
GPC1)

— Potkin et al. (2009), Schizophrenia
Bulletin 35:96—108.
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Modelling Imaging Data
With Genetic Variables

* Mass Univariate Modelling

— Fit same univariate linear model at each
voxel/ROI

» Quantitative Trait Multiple Regression
— Linear model fit at each voxel

* Regressors
— Genetic
— Group (Case/Control)
— Demographic / nuisance variables
—eflc



Genetic Models
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Genetic Models for SNP data:
Power

* Q: What's the Optimal Model?
A: The Correct One!

e True model unknown

— Common disease, common variant hypothesis for
complex diseases

— Expect many genes contributing to risk
— Don't expect to find one single SNP with simple
Medelian influence
« To avoid yet further multiplicity, typical practice
IS to pick a one model
— Fit additive, hope its additive

— Additive seems like single best model for association
studies: B Freidlin et al, Hum Hered, 53:146-152, 2002



Genetic Models for SNP data:
Robustness

Y A & o
 Concerns about influence g 0 g
— When minimum allele frequency 3 : g
(MAF) too low, rare homozygotes & : °
may become influential g|°
* Merge rare homozygotes with Iy ; }
heterozygotes Allele Count

— Cutoff?

— 5% MAF cutoff is common in GWAs,
but corresponds to 0.052 = 0.25% frequency!

* 5% MAF, 100 subjects — < 1 rare homozygote expected!

— 32% MAF cutoff — 0.322 = 10% frequency

— Or just set arbitrary limit (e.g. 10) below which rare
homozygotes are merged with heterozygotes



Mass Univariate Modelling
Nuisance Effects

* Age & Gender

— Substantial normal variation in GM w/ Age

* Total Gray matter (for VBM)

— Discounts global changes to find localized
changes

 Other
— Site
— Medication

— Anything that is also related to the genetic
effects
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Inference On Images for Img.Gen...
Nothing Special

* Voxel-wise
— Reject Ho, point-by-point, by statistic magnitude
* Cluster-wise

— Define contiguous blobs with arbitrary threshold u
— Reject Ho for each cluster larger than k

clus

«—

Cluster not /k k\ Cluster

significant o o significant



Cluster Inference & Stationarity

» Cluster-wise preferred over voxel-wise

— Generally more sensitive
Friston et al, Neurolmage 4:223-235, 1996

— Spatially-extended signals typical

 Problem w/ VBM

— Standard cluster methods assume
stationarity, constant smoothness

— Assuming stationarity, false positive clusters
will be found in extra-smooth regions

— VBM noise very non-stationary
* Nonstationary cluster inference

— Must un-warp nonstationarity

— Available as SPM toolbox
« Hayasaka et al, Neurolmage 22:676— 687,

2004

o http://[fmri.wfubmc.edu/cms/software#NS

* Also in Christian Gaser’'s VBM toolbox

VBM:
Image of
FWHM
Noise
Smoothness

Nonstationary ...warped to
[ stationarity




Inference on Images

* Must account for searching over space
— 1 voxel / 1 ROl

 No correction

— k ROls

« Bonferroni (largish ROI should be fairly
independent)

— Whole brain, masked voxel-wise analysis

« FWE, FDR correction for voxel-wise or cluster-wise
analysis
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Inference Over the Genome

Just with imaging, pay enormous power hit for
un-constrained search

1 SNP

— No correction

1 gene

— For k tagging SNPs, Bonferroni OK

— Better corrections available for dependent SNPs

All SNPs, genes

— Permutation methods, improved Bonferroni methods
— FDR



One Inference Strategy:
GSK CIC Candidate SNP Protocol

« Define strict primary outcome

— For given gene, use single SNP
» Best (large) association study significance, otw
* Best nonsynonymous exonic available, otw
+ Best 5’ intronic available
— For each SNP, only consider main effect of gene

 If fitting gene x group interaction, test for average effect
— Any association is more likely than a disease-specific association
— Even if disease-specification association, opposing sign of effect unlikely w/ VBM

— 1-number summary per gene
* Minimum nonstationary cluster FWE-corrected P-value for association (1 DF F-stat)

— Bonferroni correction for number of genes

* Primary outcomes then have strong FWE control

— Over brain, over genes
— (1-a)100% confidence of no false positives anywhere

e Secondary outcomes

— Interactions, sub-group results
— Use same FWE-inferences, but mark as post-hoc



Inference Over the Genome:
Combining SNPs

« To pool SNPs within genes, typically separate
models are fit & P-values are combined...

— Tippett's Method (1931)

e Minimum P-value

— Fisher’'s Method (1950)

» Based on product of P-values, equivalently -2 x . log P,

— Stouffer’'s Method (1949)
- Scaled Average Z, Avg(Z) x \n ~N(0,1), Z= ®(1-P)

« Same approaches used to combine gene
Inferences within networks

See: Poster #178 SU-PM, TE Nichols, “Comparison of Whole Brain Multiloci Association Methods”



Inference Over the Genome:
Haplotypes
« Haplotypes

— Set of closely linked genetic markers
— Tend to be inherited together

— Example
« 3 SNPs within a gene, alleles: A/T, A/T, C/G

 This could give rise to 23 = 8 possible haplotypes:
AAC, TAG, TAC, AAG, ATC, TTG, TTC, AAG

 Fit regression model 8 regressors, use F-test to find any
haplotype variation

« Should be more sensitive then separate models,
but high-DF F-tests are often have low power

— Unless small number of SNPs, SNP-combining
probably better
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Population Substructure

* When sample is a mix of ethnicities, can find
spurious correlations

 Example: Coronary Artery Disease
— Find association btw gene XYZ & heart attack incidence.

Conclude’?
causes Elevated
Rlsk
Great'
assomated associated

- Causes
Wlth with EIevated
I Rlsk

* Oop’s... I've only discovered that gene XYZ is an ancestry marker!




Population Substructure

 Solution
— “Admixture modelling” or PCA-based methods (“eigen-strat”)

— Methods find large scale patterns of genetic variation that typify
different sub-groups of your population

— Can enter these patterns as nuisance variables to discount such
variation creating false positives
* Problem with the solutions
— Need large sample sizes (1,000's) to adequately deal with this
— Remains potential source of false positive risk for typical tiny
Imaging genetic sample sizes
* Pragmatic solution

— Work closely with genetics colleagues to define ethnically
homogeneous study groups

— Build imaging sample as subset of large (1000+) association
samples, get population stratification covariates based on entire
sample



Statistical Validity vs. Face Validity

« Statistically Inference

— Optimally sensitive results are obtained from
modelling all data jointly

— A positive result is an inference on the population
sampled

« Current Statistical Genetics Practice
— One study a publication does not make

— Any positive result must be replicated in an
iIndependent population

* Result of high incidence of unreplicable early findings in
GWAS

» Also possible population substructure problems



Statistical Validity vs. Face Validity

« Replication is desirable

* |In defence of imaging genetics

— In genetics, FWE significance in a GWAS study is
almost never seen
« Typical is a fixed rule-of-thumb GWAS a =5 x 10/
 Imaging literature is rife with uncorrected inferences, but
whole brain corrected significance is seen
— All GWAS intuition is on a categorical phenotype,
“‘Case” or “Control”

« Quantitative phenotype, especially one derived from a
designed experiment (i.e. fMRI) may well have better power



Further Limitations

« Basic stats quiz, A or B?

— A: “This genetic variant causes more gray matter in
MTL”

— B: “This genetic variant explains differences in grey
matter in MTL”

— (Causality vs Causation)
« Remember even more sources of false positives
— Data quality, outliers
« Check plots of intriguing results for outliers
— Linkage Disequilibrium (LD) & Mis-localization

 Significant SNP can inside Gene X’s exon, butin LD 2 or 3
other genes!!

— Gene networks

« Other genes in tightly regulated network may give similar
results

« Non-unique effect



Overuieu o{‘ Chr-3
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Conclusions

Understand the Genetic Models
— Additive default choice

Understand the Limitations
— Population substructure, need for replication

Massive Multiple Testing Problem

— Limit search whenever possible, over the
brain & genes/SNPs

Befriend a geneticist!

— No way to good science with out a tight
collaboration



