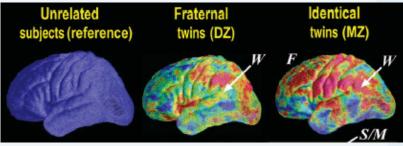


#### Association Methods for Functional and Structural MRI

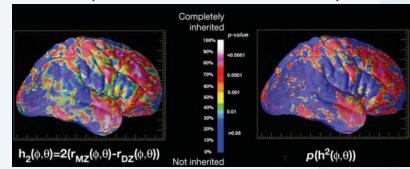
Thomas Nichols, PhD Director, Modelling & Genetics GlaxoSmithKline Clinical Imaging Centre




### Motivation: Imaging Genetics in Drug Discovery

- Brain structure heritable
- Objective, reproducible phenotype
  - Important in psychiatry, where non-imaging measures are coarse, with poor reproducibility
- Sensitive
  - Brain anatomy/function closer to disease process than other measures
- Use to collaborate other findings
  - Use brain imaging to build confidence in marginal finding from whole-genome analyses

| Brain Phenotype           | $h^2$ |
|---------------------------|-------|
| Whole brain volume        | 0.78  |
| Total gray matter volume  | 0.88  |
| Total white matter volume | 0.85  |


Glahn, Thompson, Blangero. Hum Brain Mapp 28:488-501, 2007

#### Thickness of Cortical GM (r<sup>2</sup>)



Thompson et al, Nature Neuro, 4(12):1253-1258, 2001

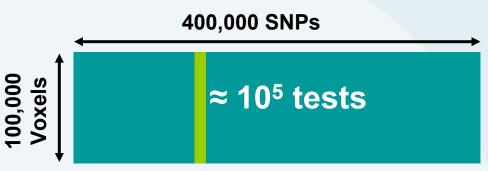
#### Heritability of GM Thickness (h<sup>2</sup> & corrected P-value)



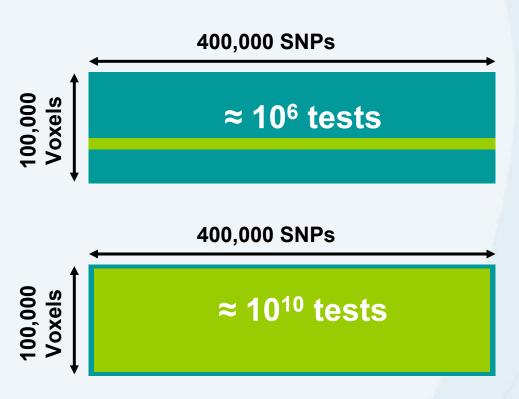
Thompson & Toga, Annals of Medicine 34(7-8):523-36, 2002

## Outline

- Types of Imaging Genetics Analyses
- Models for Genetic Effects
- Inference Over the Brain
- Inference Over the Genome
- Limitations
- Conclusions

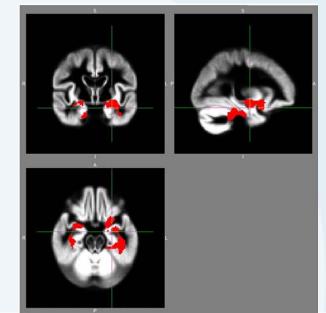

## **Types of Imaging Genetics Analyses**

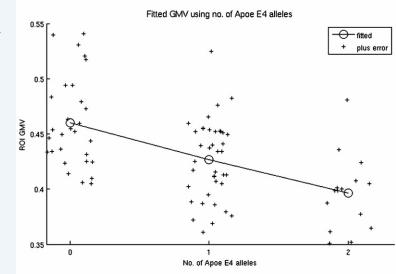
- Brain Imaging already high-dimensional
   ≈ 100,000 voxels


   Highly correlated
- Genetic data also high-dimensional
  - ≈ 20 million known SNPs
    - The 0.5-1m tagging SNPs typically used are lightly correlated
  - ≈ 30,000 genes
- How to deal with all this multiplicity ??!

## **Types of Imaging Genetics Analyses**

- Candidate SNP
  - Traditional imaging analysis w/ SNP predictor





- Region of Interest or 1 # summary
  - Traditional Whole-Genome Analysis
- Whole-Brain, Whole-Genome



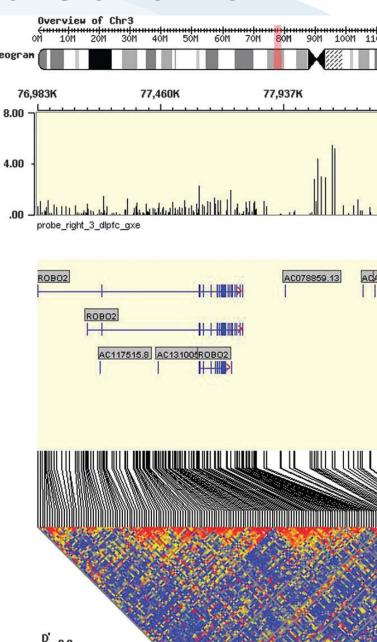
## Whole Brain, Candidate SNP Analyses

- One Genetic Marker selected *a priori*
  - Either single SNP, or single variant of a gene
- Example
  - VBM Association of GM & ApoE ε4 in Mild AD
  - Filippini et al (2009). Anatomically-distinct genetic associations of APOE ε4 allele load with regional cortical atrophy in Alzheimer's disease. NeuroImage 44:724–728





## Imaging ROI, Whole Genome Analyses


- One Imaging phenotype selected a priori
  - Either a ROI value (e.g. % BOLD change) or some single-number summary (e.g. total brain GM)
- Example
  - WGA
     Association
     in MS, n=794
  - Total brain volume results
    - No GWA sign.

| SNP                      | Chrom | Position  | GeneSymbol | Alleles                 | Minor<br>allele<br>frequency | Adj Geno<br>Log <i>P</i> -<br>value |  |  |
|--------------------------|-------|-----------|------------|-------------------------|------------------------------|-------------------------------------|--|--|
| Brain parenchymal volume |       |           |            |                         |                              |                                     |  |  |
| rs4866550                | 5     | 3361312   | IRX1       | C/T                     | 0.32                         | 6.06                                |  |  |
| rs10078091               | 5     | 25530762  | CDH10      | A/G                     | 0.27                         | 5.91                                |  |  |
| rs368380                 | 20    | 14762090  | C20orf133  | C/T                     | 0.33                         | 5.73                                |  |  |
| rs4473631                | 4     | 174876499 | MORF4      | A/C                     | 0.22                         | 5.55                                |  |  |
| rs1869410                | 2     | 5207954   | SOX11      | $\mathrm{C}/\mathrm{T}$ | 0.28                         | 5.40                                |  |  |
| rs261902                 | 12    | 32367994  | BICD1      | T/C                     | 0.16                         | 4.42                                |  |  |

Baranzini et al. (2009). Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Human Molecular Genetics 2009 18(4):767-778.

#### Imaging ROI, Whole Genome Analyses 40M 50M 60M Ideogra

- None known that use no-dimension reduction Log(P)
  - Typically, reduce imaging dim
  - Set of comprehensive ROI's
  - Reduced resolution voxel-wise analysis
- Example
  - Schizophrenia WGA with %BOLD fMRI quantitative trait (QT)
    - n=64 SCZ, n=74 matched controls
  - QT is % BOLD in DLPFC for Sternberg Item Recognition Paradigm
    - Tested for QT × {NC,SCZ} interaction
  - Found weak evidence for six genes at  $\alpha$ <10<sup>-6</sup> (ROBO1-ROBO2, TNIK, CTXN3-SLC12A2, POU3F2, TRAF, and GPC1)
  - Potkin et al. (2009), Schizophrenia Bulletin 35:96–108.

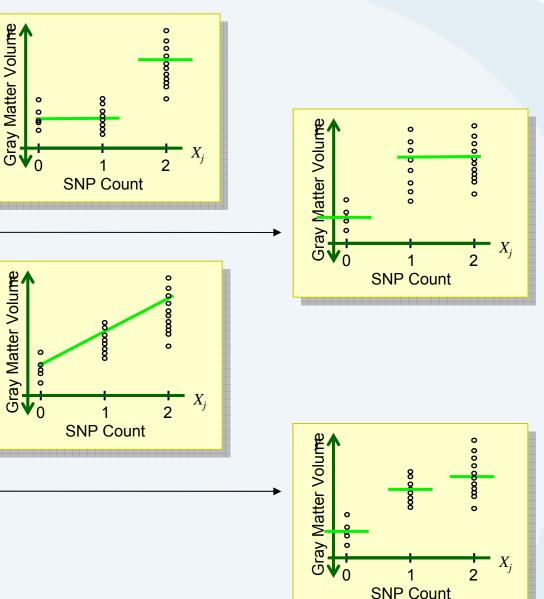


## Outline

- Types of Imaging Genetics Analyses
- Models for Genetic Effects
- Inference Over the Brain
- Inference Over the Genome
- Limitations
- Conclusions

## Modelling Imaging Data With Genetic Variables

- Mass Univariate Modelling
  - Fit same univariate linear model at each voxel/ROI
- Quantitative Trait Multiple Regression
   Linear model fit at each voxel
- Regressors
  - Genetic
  - Group (Case/Control)
  - Demographic / nuisance variables
  - etc

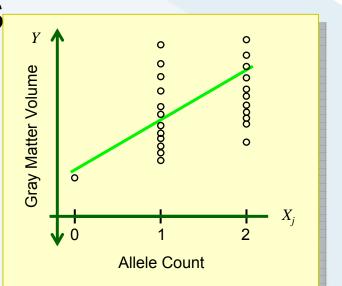

### Genetic Models for SNP data

Recessive

Dominant

Additive

• Genotypic




## Genetic Models for SNP data: Power

- Q: What's the Optimal Model? A: The Correct One!
- True model unknown
  - Common disease, common variant hypothesis for complex diseases
  - Expect many genes contributing to risk
  - Don't expect to find one single SNP with simple Medelian influence
- To avoid yet further multiplicity, typical practice is to pick a one model
  - Fit additive, hope its additive
  - Additive seems like single best model for association studies: B Freidlin et al, Hum Hered, 53:146-152, 2002

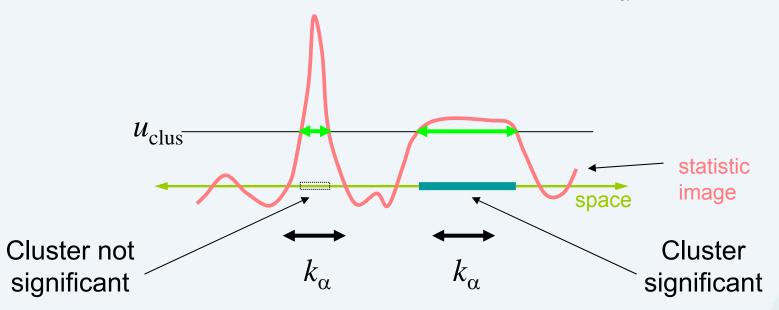
## Genetic Models for SNP data: Robustness

- Concerns about influence
  - When minimum allele frequency (MAF) too low, rare homozygotes may become influential
- Merge rare homozygotes with heterozygotes
  - Cutoff?



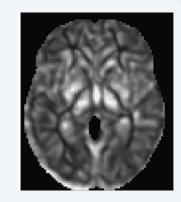
- 5% MAF cutoff is common in GWAs, but corresponds to 0.05<sup>2</sup> = 0.25% frequency!
  - 5% MAF, 100 subjects  $\rightarrow$  < 1 rare homozygote expected!
- 32% MAF cutoff  $\rightarrow$  0.32<sup>2</sup> = 10% frequency
- Or just set arbitrary limit (e.g. 10) below which rare homozygotes are merged with heterozygotes

## Mass Univariate Modelling Nuisance Effects


- Age & Gender
  - Substantial normal variation in GM w/ Age
- Total Gray matter (for VBM)
  - Discounts global changes to find localized changes
- Other
  - Site
  - Medication
  - Anything that is also related to the genetic effects

## Outline

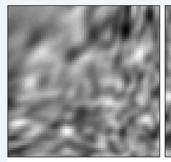
- Types of Imaging Genetics Analyses
- Models for Genetic Effects
- Inference Over the Brain
- Inference Over the Genome
- Limitations
- Conclusions

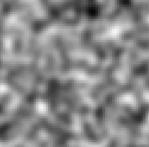

## Inference On Images for Img.Gen... Nothing Special

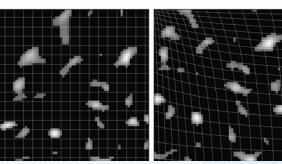
- Voxel-wise
  - Reject Ho, point-by-point, by statistic magnitude
- Cluster-wise
  - Define contiguous blobs with arbitrary threshold  $u_{clus}$
  - Reject Ho for each cluster larger than  $k_{\alpha}$



## **Cluster Inference & Stationarity**


- Cluster-wise preferred over voxel-wise
  - Generally more sensitive Friston et al, NeuroImage 4:223-235, 1996
  - Spatially-extended signals typical
- Problem w/ VBM
  - Standard cluster methods assume stationarity, constant smoothness
  - Assuming stationarity, false positive clusters will be found in extra-smooth regions
  - VBM noise very non-stationary
- Nonstationary cluster inference
  - Must un-warp nonstationarity
  - Available as SPM toolbox
    - Hayasaka et al, NeuroImage 22:676–687, 2004
    - <u>http://fmri.wfubmc.edu/cms/software#NS</u>
    - Also in Christian Gaser's VBM toolbox





VBM: Image of FWHM Noise Smoothness

Nonstationary noise...

...warped to stationarity







## Inference on Images

- Must account for searching over space
  - 1 voxel / 1 ROI
    - No correction
  - k ROIs
    - Bonferroni (largish ROI should be fairly independent)
  - Whole brain, masked voxel-wise analysis
    - FWE, FDR correction for voxel-wise or cluster-wise analysis

## Outline

- Types of Imaging Genetics Analyses
- Models for Genetic Effects
- Inference Over the Brain
- Inference Over the Genome
- Limitations
- Conclusions

### Inference Over the Genome

- Just with imaging, pay enormous power hit for un-constrained search
- 1 SNP
  - No correction
- 1 gene
  - For k tagging SNPs, Bonferroni OK
  - Better corrections available for dependent SNPs
- All SNPs, genes
  - Permutation methods, improved Bonferroni methods
    FDR

## One Inference Strategy: GSK CIC Candidate SNP Protocol

#### Define strict primary outcome

- For given gene, use single SNP
  - Best (large) association study significance, otw
  - Best nonsynonymous exonic available, otw
  - Best 5' intronic available
- For each SNP, only consider main effect of gene
  - If fitting gene x group interaction, test for average effect
    - Any association is more likely than a disease-specific association
    - Even if disease-specification association, opposing sign of effect unlikely w/ VBM
- 1-number summary per gene
  - Minimum nonstationary cluster FWE-corrected P-value for association (1 DF F-stat)
- Bonferroni correction for number of genes

#### • Primary outcomes then have strong FWE control

- Over brain, over genes
- $(1-\alpha)100\%$  confidence of no false positives anywhere

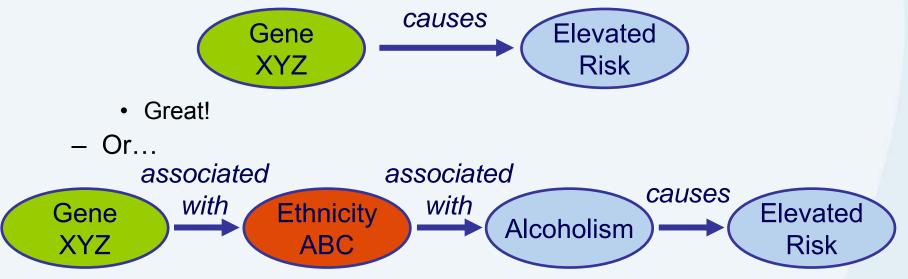
#### Secondary outcomes

- Interactions, sub-group results
- Use same FWE-inferences, but mark as post-hoc

## Inference Over the Genome: Combining SNPs

- To pool SNPs within genes, typically separate models are fit & P-values are combined...
  - Tippett's Method (1931)
    - Minimum P-value
  - Fisher's Method (1950)
    - Based on product of P-values, equivalently  $-2 \times \sum_{i} \log P_{i}$
  - Stouffer's Method (1949)
    - Scaled Average Z,  $Avg(Z) \times \sqrt{n} \sim N(0,1)$ ,  $Z = \Phi(1-P)$
- Same approaches used to combine gene inferences within networks

## Inference Over the Genome: Haplotypes


- Haplotypes
  - Set of closely linked genetic markers
  - Tend to be inherited together
  - Example
    - 3 SNPs within a gene, alleles: A/T, A/T, C/G
    - This could give rise to 2<sup>3</sup> = 8 possible haplotypes: AAC, TAG, TAC, AAG, ATC, TTG, TTC, AAG
    - Fit regression model 8 regressors, use F-test to find any haplotype variation
- Should be more sensitive then separate models, but high-DF F-tests are often have low power
  - Unless small number of SNPs, SNP-combining probably better

## Outline

- Types of Imaging Genetics Analyses
- Models for Genetic Effects
- Inference Over the Brain
- Inference Over the Genome
- Limitations
- Conclusions

## **Population Substructure**

- When sample is a mix of ethnicities, can find spurious correlations
- Example: Coronary Artery Disease
  - Find association btw gene XYZ & heart attack incidence. Conclude?



• Oop's... I've only discovered that gene XYZ is an ancestry marker!

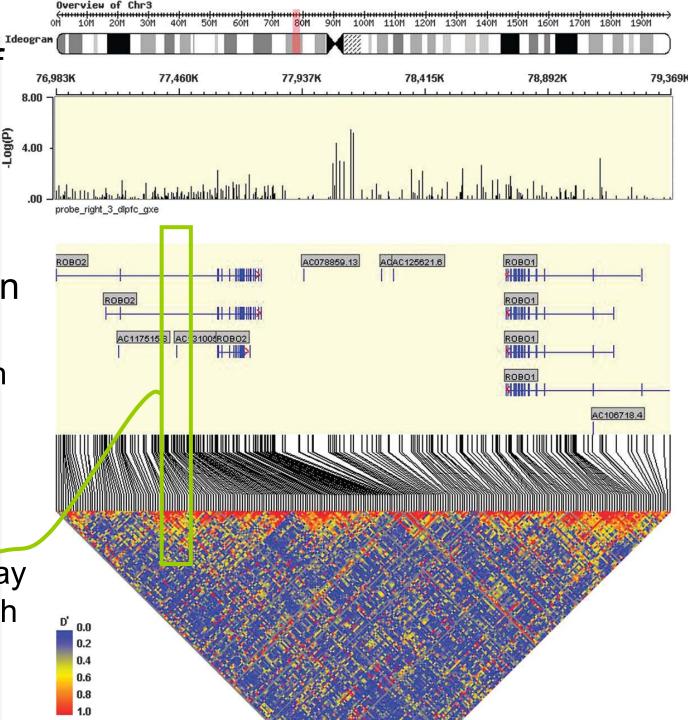
## **Population Substructure**

- Solution
  - "Admixture modelling" or PCA-based methods ("eigen-strat")
  - Methods find large scale patterns of genetic variation that typify different sub-groups of your population
  - Can enter these patterns as nuisance variables to discount such variation creating false positives
- Problem with the solutions
  - Need large sample sizes (1,000's) to adequately deal with this
  - Remains potential source of false positive risk for typical tiny imaging genetic sample sizes
- Pragmatic solution
  - Work closely with genetics colleagues to define ethnically homogeneous study groups
  - Build imaging sample as subset of large (1000+) association samples, get population stratification covariates based on entire sample

## Statistical Validity vs. Face Validity

- Statistically Inference
  - Optimally sensitive results are obtained from modelling all data jointly
  - A positive result is an inference on the population sampled
- Current Statistical Genetics Practice
  - One study a publication does not make
  - Any positive result must be replicated in an independent population
    - Result of high incidence of unreplicable early findings in GWAS
    - Also possible population substructure problems

### Statistical Validity vs. Face Validity


- Replication is desirable
- In defence of imaging genetics
  - In genetics, FWE significance in a GWAS study is almost never seen
    - Typical is a fixed rule-of-thumb GWAS  $\alpha = 5 \times 10^{-7}$
    - Imaging literature is rife with uncorrected inferences, but whole brain corrected significance is seen
  - All GWAS intuition is on a *categorical* phenotype, "Case" or "Control"
    - Quantitative phenotype, especially one derived from a designed experiment (i.e. fMRI) may well have better power

## **Further Limitations**

- Basic stats quiz, A or B?
  - A: "This genetic variant causes more gray matter in MTL"
  - B: "This genetic variant explains differences in grey matter in MTL"
  - (Causality vs Causation)
- Remember even more sources of false positives
  - Data quality, outliers
    - Check plots of intriguing results for outliers
  - Linkage Disequilibrium (LD) & Mis-localization
    - Significant SNP can inside Gene X's exon, but in LD 2 or 3 other genes!!
  - Gene networks
    - Other genes in tightly regulated network may give similar results
    - Non-unique effect

# Challenges of Localization

- Results for ROBO2-ROBO1 region
  - Note near by genes in high LD regions
  - If a strong association were found here • no way to know which gene responsible



## Outline

- Types of Imaging Genetics Analyses
- Models for Genetic Effects
- Inference Over the Brain
- Inference Over the Genome
- Limitations
- Conclusions

## Conclusions

- Understand the Genetic Models

   Additive default choice
- Understand the Limitations

   Population substructure, need for replication
- Massive Multiple Testing Problem
  - Limit search whenever possible, over the brain & genes/SNPs
- Befriend a geneticist!
  - No way to good science with out a tight collaboration