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B-Spline Signal Processing: Part I—Theory

Michael Unser, Member, IEEE, Akram Aldroubi, and Murray Eden, Life Fellow, IEEE

Abstract—This paper describes a set of efficient filtering tech-
niques for the processing and representation of signals in terms
of continuous B-spline basis functions. We first consider the
problem of determining the spline coefficients for an exact sig-
nal interpolation (direct B-spline transform). The reverse op-
eration is the signal reconstruction from its spline coefficients
with an optional zooming factor m (indirect B-spline trans-
form). We derive general expressions for the z transforms and
the equivalent continuous impulse responses of B-spline inter-
polators of order n. We present simple techniques for signal
differentiation and filtering in the transformed domain. We then
derive recursive filters that efficiently solve the problems of
smoothing spline and least squares approximations. The
smoothing spline technique approximates a signal with a com-
plete set of coefficients subject to certain regularization or
smoothness constraints. The least squares approach, on the
other hand, uses a reduced number of B-spline coefficients with
equally spaced nodes; this technique is in many ways analogous
to the application of antialiasing low-pass filter prior to deci-
mation in order to represent a signal correctly with a reduced
number of samples.

I. INTRODUCTION

N most image processing applications, the pictures to

be manipulated are represented by a set of uniformly
spaced sampled values. Although most processing algo-
rithms are derived within a purely discrete framework [1],
there is a variety of problems best formulated by consid-
ering a real-valued picture function g(x, y) defined over
the real plane R?; for examples in computer vision see
[2]. An obvious approach is to fit a parametrized contin-
uous image model to the observed data points and to
derive algorithms that operate on the model’s parameter
values directly. Piecewise bidimensional polynomial
functions are frequently used in this context [3], [4]. One
usually has the choice of two options. The first is to use
an exact representation by which g(x, y) precisely inter-
polates the sampled values. The second is to use an ap-
proximate representation in which the function parame-
ters are determined by minimizing some measure of the
discrepancy between pixel values and g (x, y) at the grid
points. This approach usually has fewer degrees of free-
dom than the previous one, or, at least, some built-in
smoothness constraints, which may make it more robust
in the presence of noise.
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Edge detection is a good example in which the use of
a continuous signal representation is particularly appo-
site. Most algorithms are based on the evaluation of spa-
tial gradients or Laplacians [5]. Early techniques relied
on finite differences to estimate these quantities [6], [7];
however, these simple operators used on noisy images
perform poorly. More recent approaches often depend on
the concept of fitting a continuous surface locally to the
data [5], [8], [9]. Haralick used local least squares poly-
nomial fits to determine the zero crossing of the direc-
tional second derivatives [9]. Poggio et al. proposed a
smoothing cubic spline technique to improve the estima-
tion of the intensity gradient in the presence of noise [10],
[11]. These authors showed the approach to be more or
less equivalent to smoothing the image with a Gaussian
low-pass filter in a preprocessing step. In fact, an initial
smoothing operation is implicit to all least squares tech-
niques and is used in almost any modern edge detection
scheme [5], [12], [13]. The surface fitting concept is also
well suited to estimating multiple-order derivatives, al-
though alternative design procedures such as the exten-
sion of difference operators or the use of an optimal Wie-
ner filter for noise reduction may also be used [14]. There
are a variety of additional problems in computer vision
(optical flow, surface reconstruction, the recovery of
lightness and color, shape from shading and stereo match-
ing) that are most conveniently formulated in terms of dif-
ferential equations involving continuous image models
[2]. Here again, the use of surface approximation tech-
niques appears to be an interesting alternative to more
conventional finite difference methods, which are noto-
riously unstable in the presence of noise [15]. Finally,
with the recent development of multiresolution techniques
[16], [17], there is a strong need for continuous image
representations compatible with varying levels of resolu-
tions, and which facilitate the transition from one scale to
another.

When contrasted with local or running polynomial fits,
the use of B-splines functions [18]-[21], which are piece-
wise polynomials as well, seems to have a number of ad-
vantages. First, higher order polynomials tend to oscillate
while spline functions are usually smooth and well be-
haved. Second, the juxtaposition of local polynomial ap-
proximations may produce strong discontinuities in the
connecting regions. B-spline surfaces, by contrast, are
continuous everywhere. The polynomial segments are
patched together so that the interpolating function and all
derivatives up to order n — 1 are continuous at all joining
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intersections. Third, there is exactly one B-spline coeffi-
cient associated with each grid point and the range of these
coefficients is of the same order of magnitude as that of
the initial gray level values [20]. This property greatly
facilitates the storage of B-spline representations and al-
lows the use of standard picture arrays. Finally, as will
be shown here, either exact or approximate B-spline sig-
nal representations can be evaluated quite efficiently.

Since the early paper of Hou and Andrews, which pro-
vides a detailed analysis of cubic spline interpolation [22],
the use of B-spline representations has had limited appli-
cation in signal processing. It would appear that the main
reason for this lack of acceptance is because the conven-
tional approach to B-spline interpolation or approxima-
tion is computationally quite expensive for it involves ex-
plicit matrix inversions and multiplications [22]. In
principle, this problem can be alleviated by using more
efficient computational techniques for the fast solution of
banded systems of equations; such algorithms are to be
found in the approximation theory or numerical methods
literature [20], [23]. In the context of signal processing
where the spacing between the data points is constant,
there is yet another simpler approach. In recent years,
some authors have come to realize that the operations in-
volved are translation invariant and that B-spline coeffi-
cients could be determined efficiently through linear fil-
tering. Toraichi et al. [24] have studied quadratic spline
interpolation and have derived a finite impulse response
filter approximating this operator. Poggio et al. {11], [25]
have suggested using smoothing cubic splines to regular-
ize differentiation and have shown that the variational
formulation of a Tikhonov regularization leads to a
Gaussian-like convolution filter. Elsewhere, we have
considered the general case of B-spline interpolation of
any order and have provided simple mechanisms for the
design of filters to evaluate the direct or indirect B-spline
transforms [26]. We have also brought out the recursive
structure of these operators, which is the key to the design
of fast computational algorithms.

The main purpose of this paper is to extend these recent
results to signal approximation and to present a new class
of processing techniques based on the representation of a
signal in terms of continuous B-spline basis functions. In
Section II, we introduce some preliminary definitions and
review some essential properties of continuous B-spline
functions. The basic approach for B-spline interpolation
is summarized in Section III, which also includes some
extensions of our previous results [26]. Finally, in Sec-
tion IV, we describe new signal processing techniques for
efficient signal differentiation, filtering, smoothing spline,
and least squares approximations. The major result is that
all these operations can be performed using space in-
variant linear operators completely characterized in terms
of their z transforms.

The present paper is concerned primarily with the the-
oretical aspects of B-spline processing. Efficient imple-
mentation techniques, examples of applications, as well
as the interpretation of these results in the context of im-

age processing will be discussed in a companion paper
[27].

II. PRELIMINARIES
A. Discrete Signals and Operators

L, in the space of square-summable real-valued se-
quences {a(k)}.cz. I, is a Hilbert space whose metric | - |
(the /,-norm) is derived from the standard inner product

+ oo
(a, by = 2 a(bk). @2.1)
Some of the later derivations will involve the differentia-
tion of such inner products with respect to a given signal.
In Appendix A, we give the rules of this calculus useful
for our purpose.

The convolution between two sequences a € , and b €
l, is denoted by b*a (k). The sequence b may be viewed
as a discrete convolution operator (or digital filter) that is
applied to a; it is entirely characterized by its z transform
(or transfer function) B(z). If B(z) has no zeros on the
unit circle, then the inverse operator (b)~' exists and is
uniquely defined by the equation

() '® © 1/B@. 2.2)

We also use the symbol ' to denote the adjoint operator
that reverses a signal:

b' (k) = b(—k) © B(1/2).

Another useful operator is the up-sampling by an integer
multiple m, which is defined as

bk’ fork = mk’ ;

. < B(z™.
0 otherwise

[B)m (k) == {

2.3)

The dual operation is the down-sampling (or decimation)
by an integer m:
m—1

= o 1 2rkql/m
(611 ) := b(mk) < — 2 B(lze”™1'/™

2.4)
wherej = v—1.

B. Continuous Polynomial Splines and B-Spline
Functions

In this paper, we are concerned with the problem of
constructing polynomial splines that interpolate or ap-
proximate a given sequence g (k) € [,; these functions are
piecewise polynomials that satisfy some specific conti-
nuity constraints. The generic space of polynomial splines
of order n is denoted by S7, where the superscript n refers
to the degree of the piecewise polynomial segments, and
where the subscript represents the spacing between the
knots (i.e., the joining points of the polynomial seg-
ments). More precisely, §7 is the subset of functions of
L, (the space of square integrable functions) that are of
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class C"~! (i.e., continuous functions with continuous
derivatives up to order n — 1) and are equal to a poly-
nomial of degree n on each interval [k, k + 1), k € Z when
nis odd, and [k — %, k + %), k € Z when n is even. In the
present context, it is especially convenient to use an
equivalent definition of S} proposed by Schoenberg (cf.
[19, p. 199, theorem 12]):

+ oo

i= {8"0‘) = 2 YWB"@ -k, xeR ye m}

(2.5)

where 8" (x) is the symmetrical B-spline of order n

n+1i i
pon (=’ (n+1 n+1 N\
B(x)-~j§0 - < j ><x+ 5 1>

n+1 .
cutlx + 2 —-Jjl, xe R (2.6)

and where p (x) is the unit step function

O’
 (x) ={
1’

This definition essentially states that any polynomial
spline g" (x) € §7 can be constructed from a weighted sum
of shifted B-splines and is uniquely characterized by the
discrete sequence of its spline coefficients y (k).

Since the set of shifted B-splines {8"(x — k), k € Z}
constitutes a basis of S7, the study of these functions will
uncover most of the properties of polynomial splines. For
instance, it is clear from (2.6), that the B"(x)’s are made
of piecewise polynomials of degree n that are connected
at the knot points. Interestingly enough, these functions
can be constructed recursively:

+ x> gt <x +

n+1
2

x =0,
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Another fundamental result is the well-known convolu-
tion property:

B ) = B" 1 xB0x) = OB - -
n+ 1times

*B0 (2.9

which states that a B-spline of order n can be generated
by convolving 8°(n + 1) times with itself; the function
B°(x) is a centered normalized rectangular pulse. Based
on (2.9), it is rather straightforward to show that all
B-splines are positive and have an integral that is equal to
one. For a more detailed discussion of these properties,
refer to [18], [20], [21].

III. DiscrReTE B-SPLINES

Studying the properties of discrete (or sampled)
B-splines is essential to the design of efficient algorithms
for representing discrete signals in terms of such basis
functions. In this section, we summarize the most impor-
tant results reported initially in [26] with some additional
formulas for the efficient evaluation of discrete B-splines.
We also emphasize an interpretation of polynomial spline
interpolators in terms of their continuous impulse re-
sponse (cardinal spline) and provide a simple expression
for the frequency response of such systems.

A. Definition and Properties

We define the discrete centered and shifted B-splines
by sampling the corresponding continuous functions ex-
panded by an integer factor of m:

B (x) =

Their derivatives can also be obtained in a recursive fash-
ion based on the following property

66"(x)_ n-1 1 _ pn-l __l
P =f <x+2> B <x 2>. 2.8)

bl (k) := B"(k/m) 3.1
cmk) = B"(k/m + 3). (3.2)
n+1 v 1
>+< 2 _">B <"'2>
@2.7)

n

According to our convention, the superscript n refers to
the order of the splines and the subscript m to the spacing
between the nodes (or step size). This latter parameter
may also be interpreted as an expansion factor. Using
(2.7), we derive the recursive equations

<—k— + 2 1>c:',,“‘(k) + <" L -k—> Nk = m)
m m

2 2
by, (k) = ; (3.3)
LA 2> by 'k + m) + <E - £> S (5)
m 2 2 m
k) = (3.4

n
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TABLE I
Z TRANSFORMS OF BASIC SYMMETRIC AND SHIFTED B-SPLINE KERNELS FORn = 0 TO 5
n Bi@@ Cl)
0 1 1
1 1 z+ 1
2
2 z+6+z" z+1
8 2
3 z+4+ 77! 24+ 1\ [z +22+ 7"
6 2 24
4 z2 + 76z + 230 + 767" + 772 24+ 1\ 2+ 10+ 27"
384 2 12
5 7% + 26z + 66 + 2677 + 272 z+ 1\ /2% + 236z + 1446 + 23677 + 772
120 2 1920

with the following starting conditions:

1 for —-m/2 <k <m/2
by (k) = / /

0 otherwise

1 forl —-m=<k<Q
(k) = .

0 otherwise.

The discrete spline of order 0, b2 (respectively, %), is a
rectangular window of width m that is centered (respec-
tively, shifted to the left) with respect to the origin when
m is odd. This operator corresponds to a moving average
filter of size m that can be implemented recursively using
a standard update procedure (two operations per sample
value) [28]. The values of b} (k) and c|(k) forn = 0to 5
were determined iteratively from (3.3) and (3.4) and cor-
respond to the coefficients of the z transforms that are
given in Table I.

For discrete B-splines with upsampling integer m
greater than 1, a convolution property that is somewhat
similar to (2.9) can be established (cf. Appendix B):

a) m odd:

1
m®=;%*ﬁ»~*m*wn<w)

— A

T
n+ | times

b) n odd and m even:
l .
k) = — 8us1y/2 * (B * by * =+« % b)) * b (k)
m ~ 7

——

n + 1times -

(3.6)
where §;(k) is the shift operator (e.g., §; * a(k) =
atk —i)).

¢) n even and m even:

1
b (k) = o Bin+2y/2 * (by * b * « = - % bY) x (k).
~— v
n+ ltimes
3.7

These equations demonstrate that discrete B-splines of
various widths can be constructed from the repeated con-
volution of simple moving average filters (b%) and a cor-
rection kernel (b}) or ¢} (depending on the parity of n and
m). Equations (3.5) and (3.6) are essentially the same and
the only addition to our initial results [26] is the use of
¢} instead of b} when m and n are both even.

B. Transform Domain Characterization

Z-transform representations are especially suited for the
design of recursive filtering algorithms for the direct and
indirect B-spline transforms [26]. The up-sampled
B-spline of order O is a rectangular window of length m
and its z transform is given by

> (3.8)

[(m-1)/2]
= Z['"/21 <

2
k=—[m/2)]
where [x] denotes the truncation of the variable x to the
smaller integer. The basic (m 1) sampled discrete
B-spline is a symmetric function characterized by
+in/2]

2

k= —[n/2]

-m

1 -z

Bl(») = ~
@) I—Zl

") = Tz (3.9)
As shown in Appendix B, the z transform of b7, when n

and m are not both even is

1 — >n+l

1
where iy = (m — 1)(n + 1) /2. Clearly, this result is in
concordance with convolution properties (3.5) and (3.6).
Furthermore, it is easily adapted to the condition n and m
both even, by replacing b by ¢} (cf. Appendix B).
From (3.10), we derive the Fourier transform of b, for
(n + 1) X (m — 1) even by replacing z by e />

< [n/2]
(3.1D)

zi() -m +{n/2]
B:ln 7) = — - n —k .
@ W(_Zl (2, Bld (310

1
m'

i

B..(f) = 1) + 2 267 (k) cos Qufk)
sin (wmf)

n+1
sin(7rf)> '
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C. Direct and Indirect Spline Transform [26]

The exact (or reversible) representation of a discrete
signal g (k) in the space of B-splines is obtained by im-
posing the interpolation condition:

vieZ, gk =g Wl - (3.12)

where g"(x) is as in (2.5). As stated before, g"(x) is en-
tirely specified by its expansion coefficients { y(k)}. The
problem of finding these coeflicients is sometimes re-
ferred to as the cardinal spline interpolation problem, and
has been thoroughly investigated by Schoenberg in a very
general mathematical framework [18], [19]. The solution
of the system of equations (3.12) and (2.5) can be deter-
mined through the use of a linear operator which we refer
to as the direct B-spline transform. We have shown that
this transform can be obtained by convolution [26]:

vkeZ, oyl = (b)) *eg)  (3.13)

where (b}) "' is the impulse response of the direct B-spline
filter of order n. The transfer function of this operator is

B (k) © B(x)”!

1
= o7 . (3.14)

HOR PGl

It may be decomposed as

A/
Bl = 7 (3.15)
T(ln/20) ’I:Il @—z)@—z")
where {(z;, 2 '): |z;] = 1,i =1, -+, [n/2]} are the

roots of B}(z) which can be grouped in reciprocal pairs
due to the symmetry of this kernel. The basic inverse
transformation (indirect B-spline transform with m = 1)
is the convolution between the coefficient sequence and
the discrete B-spline kernel bf:

vkeZ, gk = b *yk). (3.16)

The indirect B-spline filter 4] is a symmetric finite im-
pulse response (FIR) operator (cf. Table I). The direct
B-spline filter is also symmetric but has an infinite im-
pulse response (IIR). We also have demonstrated [29] that
all direct B-spline filters are stable (i.e., that the poles of
B (z)"" do not lie on the unit circle for any value of n).
Computationally efficient implementations of these oper-
ators are considered in [26].

B-splines are primarily useful for interpolation. A sig-
nal may be reconstructed from its B-spline coefficients at
a higher sampling rate through the use of an indirect trans-
form with an up-sampling factor m:

gm(k) = gn(x)|x=k/m = b:1 * [y]Tm(k)
- ox gl (. 3.17)

= by = [(b7)
We do recall that b, can be implemented from a cascade
of simple operators by taking advantage of the convolu-
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B-spline
coefficients

y

B (o) |- 8®)

»@B;(z)»gm (k")

indirect
transform

k
O o

direct
transform

1
|
1
|
|
|
|
|
|

Fig. 1. Block diagram of a general B-spline interpolator with an optional
expansion factor m.

tion properties (3.5), (3.6), or (3.7). These operations are
summarized in the block diagram in Fig. 1.

D. Cardinal Spline Representation

An interesting way to look at B-spline interpolation is
to express the interpolating function g” (x) in terms of the
discrete function values themselves:

+ o

g = 2 glon"(x = i) (3.18)
where 7" (x) is the cardinal spline of order n and repre-
sents the continuous impulse response of the polynomial
spline interpolator; this function is also sometimes re-
ferred to as the fundamental spline of order n in the ap-
proximation theory literature. By using (2.5) and (3.12),
we can show that

@ = 3 () 0ex-h. (.19

A standard decomposition of (3.15) into simple partial
fractions allows us to express ®MH7! in terms of simple
symmetrical exponential responses. By making these cal-
culations and substituting the results in (3.19), we find the
new expression

+ o0 [n/Z]

1"(x) = 2 .Z‘ oz B (x — k)

k=~ j=

(3.20)

where the z; are the [n/2] smallest roots (|z;| < 1) of
B’ (z) and where the weighting coefficients are

_ 1
o = /2]

/DG -5 I @ +g' -z -2

i#j

(3.21)

The Fourier transform of n" (x) is given by

H"(f)

S nn(x)e—j21rxf dx
(sin (af)/=f)" "'
In/2]
HOR

27 (k) cos 2fk)  (3.22)
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(d)

Fig. 2. Signals associated with the cubic spline interpolator. (a) Cubic B-spline, (b) Fourier transform of the cubic B-spline,
(c) cardinal cubic spline, (d) Fourier transform of the cardinal cubic spline. The responses in dotted lines correspond to the ideal

interpolator for band-limited signals.

As an example, the cubic cardinal spline and its Fourier
transform are shown in Figs. 2(c) and (d); we used the
coefficient values in Table I together with (3.20) and
(3.22) to compute these graphs. These functions should
not be confused with the cubic B-spline and its Fourier
transform (Figs. 2(a) and (b)), which have been used in-
correctly to characterize a cubic B-spline interpolator [1],
[30], [31]; for a discussion see [26]. The essential inter-
polation property of the cardinal spline functions stems
from the fact that they are equal to zero at all the nodes
except the origin. As n increases, the cardinal spline be-
comes more and more nearly similar to a sinc function
that corresponds to the ideal interpolator for a bandlimited
function [29]. The B-spline functions, on the other hand,
become more and more Gaussian-like, as a consequence
of the central limit theorem.

IV. B-SPLINE PROCESSING

The use of B-splines can go beyond simple interpola-
tion. Their main advantage is to provide a convenient
bridge between the discrete and continuous signal do-
mains. It is thus possible to use concepts and mathemat-
ical techniques available for the study of continuous func-
tions and to derive equivalent procedures for discrete
signals, which may suggest new processing techniques.
Some algorithms can be designed to operate directly onto
the B-spline representation of a signal.

In this section, we first consider the problem of signal
differentiation which is particularly relevant in the context
of edge detection. A related topic is the design of discrete
algorithms for the convolution of continuous signals. We
also study the issue of obtaining B-spline approximations,
which are useful for noise reduction and data compres-
sion. Such approximations can be obtained by imposing

some smoothness constraints on the solution (smoothing
splines), or by reducing the number of coefficients (least
squares approximation).

Although most of the methods discussed here are stan-
dard in the spline literature [20], [21], the present deri-
vations and the principles of computing these solutions
using digital filters are new. When compared to the con-
ventional procedure which is to formulate these tasks in
terms of matrix equations and to solve these equations
explicitly, the present filtering approach has a number of
advantages. The first is a reduction of the number of op-
erations, particularly when using recursive filters [26],
[27], which have a complexity O (N) where N is the num-
ber of data points. In contrast, the approach described in
[22], which uses explicit matrix multiplications and in-
versions has a complexity of at least O(N?). The second
is the simplicity of realization since all that is required is
the implementation of a few digital filters.

These simplifications are only possible because we are
dealing with the special case of equidistant data points.
We are also intentionally avoiding the problem of bound-
ary conditions by considering sequences of infinite length.
Fortunately, this is not a major problem in practice since
it is relatively easy to select boundary conditions so as to
suppress border artifacts [27].

A. Differentiation
One of the simplest forms of B-spline processing is dif-
ferentiation, a notion that is usually not well defined for
discrete signals. The derivative of a signal is formally ob-
tained by differentiating its continuous B-spline represen-

tation (2.5):
'@ _ 3

ox k=—oo

B "(x — k
¥ —‘L% @.1)
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Substituting (2.8) in (4.1), we find that

we T
ax “kzz_:m(y(k) yk — 1) 8 <x k+2>

+o
1
= k_Z dV *ykyp" ! <x -k + 5> 4.2
where d'V (k) = 8,(k) — 8q(k — 1) is the first-order finite
difference operator. By using the property
B (x + 3)

=" 'x+ 1) =B
ox

this formula is easily extended for higher order deriva-
tives. In particular, the second derivative of the interpo-
lating function g” (x) is given by

62 n +oo
R - 3 Gk + -0

+ytk — 1)B" 2(x — k)

+ o0

= 2 dPxy®B " x -k

4.3)

where d@ (k) = 8o(k + 1) — 28y(k) + 8o(k — 1) is the
second-order difference (or Laplacian) operator. It fol-
lows that differentiation in the B-spline domain is simply
achieved by convolution with the appropriate finite dif-
ference operator. It is important to keep in mind that the
resulting coefficients are the weights of B-splines of lower
order. Therefore, the order of the indirect B-spline trans-
form has to be decreased accordingly to map these results
back into the initial discrete signal space. This principle
is illustrated in Fig. 3 with the block diagram of a B-spline
differentiator.

B. B-Spline Filtering

We propose the concept of B-spline filtering which is
the process of applying a filtering operator to the contin-
uous B-spline representation of a signal. When the oper-
ator is discrete, this procedure is rather trivial and does
not seem to have any specific advantages: due to the lin-
earity of all operations, one may as well apply the filter
onto the discrete signal and avoid the unnecessary trans-
formation step. Of greater interest is the case when the
impulse response of the filter itself is represented by a
B-spline of order p:

+o

W) = Xz - 0.

4.4)

The continuous convolution between #” (x) and g" (x) is

+ oo

h? = g"(x) = S REHg"x — xYdx'. 4.5

By substituting (4.4) and (2.5) in (4.5) and making the
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B-spline
coefficients 1st order
| ) o derivative
: 1-z" @)~
4 (k ) Bn ( Z)-l !
]
— D, ! 2nd order
— _ derivative
. ! z-2+z" | o{B 2 (2) >
irect i
e (Laplacian)
| indirect
transform

Fig. 3. Block diagram of a general B-spline differentiator (first- and sec-
ond-order derivatives).

appropriate change of variables, we find that

+ oo

WPrg'@ = X zxy®

+ oo
: S BPNB™ x — k — x') dx’
-
which, due to the convolution properties of continuous
B-splines, is also equivalent to

+ oo

Rrg) = X zxy®B"Tx — k). 4.6)

It simply follows that #” % g"(x) can be determined from
the discrete convolution between the B-spline coefficients
of the underlying signals. The only adjustment is an in-
crease of the order of the B-spline representation of the
filtered result, as illustrated by the block diagram in Fig.
4.

An interesting application of this result is the evalua-
tion of the L,-norm of the polynomial spline g" (x). Using
(4.6), it is not difficult to show that

+ o

(y, bt xyy = \ 2 (B yk)yk)

= -0

lg" @l* =

4.7

which indicates that || g"(x)||* can be computed from the
inner product between the B-spline sequence y (k) and the
low-pass filtered signal b3"*' * y (k).

C. Smoothing Splines

For signals that are corrupted by noise, an exact
B-spline interpolation is not necessarily the most adequate
continuous signal approximation. Reinsh [33] and
Schoenberg [32] have proposed the use of smoothing
splines. Given a set of discrete signal values { g (k)}, the
smoothing spline £ (x) of order 2r — 1 is defined as the
function that minimizes

es= 2 gk - ¢

400 ar,.(x) 2
+>\S <ai' > dx = €} + Ne? (4.8)
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Fig. 4. Block diagram of a general B-spline convolver.

where N is a given positive parameter. This method es-
tablishes a sort of compromise between the desire for an
approximation that is reasonably close to the data and the
requirement of a function that is sufficiently smooth. The
choice of A\ depends on which of these two conflicting
goals is accorded the greater importance.

Schoenberg has considered the general case of non-
equally spaced nodes and a finite number of data points
[32]. He has demonstrated the important result that the
function that minimizes (4.8) tumns out to be a spline of
order n = 2r — 1 with simple knots at the data points and
some natural end conditions. Reinsh has worked out the
explicit solution for the smoothing cubic B-spline [33].

Here, we will derive the general solution for an infinite
sequence of data points with equally spaced nodes. This
task first involves finding a simpler expression for the
smoothing term in the criterion to be minimized. By gen-
eralizing (4.3) and assuming that r is even, we have

o ra 2
= S* <a g(:t)) o
- ox

S <,Z d"’*y(z‘)ﬁ"‘(x—i)>

— o0 I =—w

: < 2 dYxy(HB —j)>dx
j=—®

where d” is the symmetric rth order difference operator
(e.g., D) = (z — 2 + z7'Y/?). We note that this
expression is easily adapted for r odd by replacing 3"~ ! (x)
by 8"~ '(x + 3). We then make the change of variable j
= | — k and rearrange the sums and the integral:

+ o +

;= 2 d7xy@) X d”xyi -k

. S B 'x — DB 'x — i + k) dx.

The convolution property of the B-splines (2.9) implies
that the result of the integral is simply 8%~ '(—k) =

B~ k). A simpler form of ¢ is therefore

+ 0o

er= 2 d7xy@)

i=-

+ oo

2 d”xy@ — kb (k)

k= —o
+o

L @7 xyNd? xyx b @). 4.9)

i=-

Using a similar procedure, we can derive an identical for-
mula for the case when n is odd. By using (3.16) and
(4.9), the criterion to be minimized is expressed in terms
of discrete convolutions

+ oo

e§= % (gk) — &7 *yk)y

A D @7 ryn@? xy b6 @.10)

which, using our inner product notation, is also equiva-
lent to

€e3=1(g, 8 —2(g, b Txy
+ BT ey BT ey
+ AdD *y, dDxy by (4.11)

The smoothing spline coefficients are found by setting to
zero the derivative of this expression with respect to y (k).
By using rules (A-4) and (A-5) of the inner product cal-
culus (Appendix A), we find that

Gy kg = B7TY x b xyk)
+ N« d * (BT * y (k)
(4.12)
which, in the z transform domain, is equivalent to
B '@HG@ =BY '« HYBY '@ Y@
+ MDY @)D" HBY T @THY(©).

Finally, by solving for
B~ (z™1), we find that

Y@ = SV @GR

1
TBYT'@ + Nz +2~277Y

Y(z) and simplifying by

G(@. 4.13)
This expression clearly shows that the coefficients of the
smoothing spline can be determined by digital filtering,
as illustrated in Fig. 5. The transfer function of the
smoothing spline filter ¥ ~!(z) corresponds to a IR fil-
ter, which is most efficiently implemented recursively as
shown in [27]. We note that these operators are very sim-
ilar to some of the R-filters derived by us earlier using
regularization theory [34].
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D. Least Squares Splines

The smoothing spline has as many coeflicients (or de-
grees of freedom) as the initial signal. The noise reduction
is achieved by imposing some smoothness constraints on
the solution. De Boor has suggested instead using an ap-
proximation with fewer degrees of freedom and has intro-
duced the use of least squares splines. He describes a gen-
eral method for determining such solutions in the case of
arbitrarily spaced data points that relies on the use of
standard least squares approximation techniques [20].

Our approach which considers equally spaced nodes is
somewhat less general but leads to some substantial com-
putational simplifications. When dealing with discrete
signals, this approximation method involves some form
of decimation of the spline coefficients. This technique is
conceptually similar to resampling a signal at a lower rate
which requires the use of an antialiasing filter for the band-
limited approximation of a signal with minimum error. In
this sense, the present theory of least square B-spline fit-
ting is an extension of the conventional sampling theorem
for the subspace of piecewise polynomial functions of
class C"~'(—oo, +00) with equally spaced nodes (i.e.,
S). Clearly, this technique is a data reduction method but
can also be considered as a noise reduction procedure.

The general form of a spline approximation g,,(x) €
S7 with an up-sampling integer m is

g = A yOB"x/m—D @14

where the basis functions are enlarged by a factor of m
and the number of B-spline coefficients is reduced in the
same proportion. We wish to determine the least squares
spline coefficients that minimize the approximation error:

+ o

em= 2 (800 = [l * BLK)* (415

which, using our inner product notation, is also equiva-
lent to

€2, =48, 8 — 248, [¥ltm * D}

+ L[ Yltm * By [Yhim * b (4.16)

By setting to zero the derivative of (4.16) with respect to
y (k) (rules (A-6) and (A-7), Appendix A), we get the sys-
tem of equations

(b * bulim * y(k) = [bf * glim k), k€ Z.

4.17)

Provided that the inverse of the operator [by, * b},],.
exists, the expression can be solved by inverse filtering:

yky = sp * by * glimk), keZ  (4.18)
where the postfilter s7, (k) is defined by
-1

smk) 2= ([by, * brliw) (k). 4.19)
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Fig. 5. Block diagram of a filter-based system for signal approximation
using smoothing splines.

Using (2.4), we get an expression for the transfer function

1

Sn@ = (4.20)

m—1
— B:',,([Ze j21rk]1/m)2
m k=0
These results suggest a simple three step procedure for the
determination of the least squares B-spline coefficients: 1)
a prefiltering with a B-spline kernel of width m(b,), i) a
decimation by a factor of m, and iii) a postfiltering with
s": this algorithm is illustrated in Fig. 6. Clearly,
[B], * bl],m is a FIR filter which implies that the inverse
filter has an infinite impulse response. The issue of the
stability of these filters as well as their efficient imple-
mentation in some cases of interest is treated in the com-
panion paper [27].

It is also conceivable to perform the decimation at the
very end of the procedure. To achieve this, we have to
up-sample the impulse response of the postfilter by a fac-
tor of m. By defining

(<]
b"m = [s:'n]Tm * b:ln

we can rewrite (4.18) as

y(k) = [Bfn * g]lm (k)9 keZ

where the global transfer function of the least squares
spline prefilter is given by

4.21)

B, (@

=T
. Z B:ln(zejZWk/M)Z
m k=0

B2 = 4.22)

The prefilter 103;',, () that is applied prior to decimation can
be interpreted as a pseudoinverse of the interpolation op-
erator B’ (z). Its role is in all point similar to that of an
antialiasing filter used in conventional sampling theory.

E. Extensions to Higher Dimensions

Although all our results were derived for the one-di-
mensional case, they are directly applicable to higher di-
mensions through the use of tensor product splines [21].
The corresponding basis functions are obtained from the
product of one-dimensional splines defined for each index
variable. Since all basis functions are separable, the cor-
responding linear direct and indirect transformations are
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Fig. 6. Block diagram of a filter-based system for signal approximation
using least squares B-splines.

also separable [1]. This implies that the spline coefficients
can be determined by successive one-dimensional direct
B-spline filtering along the coordinates. The same strat-
egy is also applicable for signal reconstruction or inter-
polation by indirect spline filtering.

The results on B-spline differentiation are straightfor-
ward to extend for the evaluation of partial derivatives,
gradients or Laplacians in higher dimensions. The corre-
sponding convolution masks, which are separable, are
simply obtained through the tensor product of basic one-
dimensional difference operators. The only delicate step
is to apply the proper order reduction for the indirect
B-spline transforms along the different index variables
when these results are mapped back into the initial signal
domain. The difference operators and indirect B-spline
kernels can be combined to obtain templates for image
gradients and Laplacians [27].

The least squares B-spline approximation techniques are
also directly applicable by sequentially processing the
various dimensions of the data with one-dimensional op-
erators such as the one derived in Section IV-D. For a
simple proof that separability also applies for linear least
square approximation in two dimensions, we refer to [4,
appendix B].

The extension of smoothing B-spline approximation to
higher dimensional signals is not quite as straightforward.
In order to preserve separability, it is necessary to extend
the smoothing functional in (4.8) by introducing some ap-
propriate cross terms. In particular, by applying a tech-
nique similar to the one used in Section IV-C, we can
show that the problem of finding a bidimensional spline
that minimizes the criterion

+ + o

2 (g 1) = gk, Y

-]
k= - |=

4+ 4o ra 2

+ A S 2 <——~—a g(x,’ l)> dx
—o [=— dax
2°_° S < g, y)>

+ Au S S

34 (x, )
< ax"ay’ > dx dy

el =

(4.23)

oo

can be determined through the successive application
along the row and columns of one-dimensional operators
of the type defined by (4.13) with horizontal and vertical
regularization parameters A and u, respectively. If the last
term of this expression is not included, the corresponding
operator is not separable anymore. In addition, it is not
clear to us at this stage that we have the same fundamental
result as for the one dimensional case [32]. In other words,
we do not know if among all possible functions, the one
that minimizes (4.23) is a separable two-dimensional
spline of order 2r — 1 with knots at the grid points.

V. CONCLUSION

In this paper, we have considered the use of continuous
B-spline representations for signal processing applica-
tions such as interpolation, differentiation, filtering, noise
reduction, and data compression. B-spline representations
can be useful in a variety of problems that are best for-
mulated in a continuous rather than a discrete framework.
In this respect, it appears that computational tasks such as
differentiation, integration, or the search for extrema are
especially simple to perform in the transformed B-spline
domain. Some of the most obvious applications are the
problem of estimating higher order derivatives from a
noisy signal and edge detection in image processing.

The B-spline coefficients are obtained through a linear
transformation, which unlike other commonly used trans-
forms (Fourier, Karhunen-Loeve, sine, cosine, etc.), is
translation invariant and can be implemented efficiently
by linear filtering. The same property also applies for the
indirect B-spline transform as well as for the evaluation
of approximating representations using smoothing or least
squares splines. In this study, we have fully characterized
the filters associated with these operations by explicitly
evaluating their transfer functions for splines of any or-
der. We have also considered the extension of such op-
erators for higher dimensional signals such as digital im-
ages.

Image processing applications of all these techniques
will be presented and discussed in the companion paper
[27]. This report will also focus on the issue of efficient
implementation using recursive filters.

APPENDIX A
INNER ProbucT CALCULUS

Let y(k), z(k), and h(k) be discrete signals in /,. The
inner product between such sequences is defined by (2.1).
Using standard calculus, it is relatively straightforward to
establish the basic differentiation rules (A-1) and (A-2).
The additional equations that we are giving here are all
derived from those two fundamental rules.

a) Linear and quadratic forms:

<y, 2

= k -
PN z(k) (A-1)
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ah*y, y) ,
Tl hxyk) + h' *yk) (A-2)
aly, »»
—— = 2y(k A-3
3y (k) y (k) (A-3)

Proof of (4-3): By setting h(k) = 6(k) in (A-2), we
directly get (A-3).

b) Convolutions:
d<h *y, z)
dy (h)

= 20" * h % y(k)

h' * z(k) (A-4)

ACh*y, h*xy)
ay (k)

where ¢, (k) = h' * h(k) is the autocorrelation function
of h(k).

20m * y(k) (A-5)

Proof of (A-4): <h*y,z) = (y, h’ *z). Equation

(A-4) then directly follows from (A-1).
Proof of (A-5): C<h*xy, h xy)y = (h' *h *y, y).
Equation (A-5) then follows from (A-2).

¢) Up-sampling and decimation:
a(h* [ yltm, 22
ay(k’)

d <h*[y]Tm’ h*[)’]m)
ay (k")

= [h" * 2] (k")

= 2[h" * Al * y(k')

= 2emlim * k). (A7)

Proof of (A-6): (h*[Y1tm, 2) = (h' *2, [ yl1n). We
then apply a restriction on y (k') which is obtained by de-
cimation: {[A’' * z];,, ¥y>. Equation (A-6) then directly
follows from (A-1).

Proof of (A-7): (h*[Yl1m, h*[yhm) = (h' *
h*[ ¥1tms [ Y11 - We then apply a restriction on y(k'):
([h" * B*[yltmlims ¥> = ([h" * h],, * y, y) and use
(A-2).

APPENDIX B
DiscrReETE B-SPLINE CONVOLUTION PROPERTIES

Our derivation of the convolution properties of discrete
B-splines is based on the evaluation of the z-transforms
of the two following sequences:

n+1 i
n _ (*l)j n+1 _]_{ . " k .
Uy (k) = ST < j > <m —J> [ <; —J>

Wk ntl
=8 <m 5 > (B-1)

n+1 _ + 1 1 n
wo-ESE () ()

j=0 n J m

(A-6)
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We have shown previously that the z transform of u, is
[26]
1
Un@ = — U@ Un@)""". (B-3)

We will use a similar technique to show that the same

_ result applies for v;,. We first need to determine the trans-

form of power series of the form: {(k + Hk=0,--,
+}. Let

Pi@)= 22 (k=987 uk -8 (B4

where 6 > —1 is an offset parameter. Since
+o

S pn
EPI@) _ 5 gyttt — )
0z k=-o

+o0
=27 B -k - )

we have the recurrence equation

i1 3P

Pyt = (B-5)
0z
By using the fact that the z transform of u (k) is
1
P° = B-6
1/2(2) T (B-6)

we are able to evaluate the transforms of all subsequent
power series recursively. More importantly, we can show
that the general term has the form:

4" (2
(1 _ Z—I)n+l

where the numerator A" (2) is some polynomial in 7~ ' The

z transform of (B-2) is found by making use of the shift

theorem and substituting the expression for P, /,(2):
n+1

n — i i ntl — 1)/ —'m&
Vm(z) - mn jg() n! < J >( l)jz / (1 _ z—l)n+]'

By noticing that (—1)/z ™™ is also equal to (—z ™)’ and

recalling that
2 [m A
G+ "= Z< >xf
i=o \j
we finally get

1 A"@) (1 —z7™\""!
V::,(z)=—nﬂ<—%> .
m

Pn_l/z(Z) = (B'7)

B-8
n! 1 -z B8
By evaluating (B-8) for m = 1 and solving for A" (z), we
find that

A" (2) = Vi@)n!. (B-9)
We also note that vy, is a rectangular window of size m

and that its z transform is

1 — -—m
Vo = ‘. (B-10)

1 -2z
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By substituting (B-9) and (B-10) in (B-8), we finally get

1
Vin@ = e Vi (Va@)' . (B-11)
The convolution equations (3.5)-(3.7) follow directly
from (B-3) and (B-11) by noticing that we have the fol-
lowing equivalences:

a) m even

bk) = ul, <k , ot Dm ””’)

2

U, <k + (n+2)m +22)m>'

b) n odd and m odd

cm(k)

o = un (& + O 1)’”)
mk) = vy

¢) n even and m odd

(
(PUELIEN)
(

b = o, (& + EEDm T 1)
2
chk) = ul) <k + +22)m>
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