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1. Introduction 

Bayesian methods have proved powerful in many applications, including MRI, for the 

inference of model, e.g. physiological, parameters from data. These methods are 

based on Bayes’ theorem, which itself is deceptively simple. However, in practice the 

computations required are intractable even for simple cases. Hence methods for 

Bayesian inference are either significantly approximate, e.g. Laplace approximation, 

or achieve samples from the exact solution at significant computational expense, e.g. 

Markov Chain Monte Carlo methods. However, more recently the Variational Bayes 

(VB) method has been proposed (Attias 2000) that facilitates analytical calculations 

of the posterior distributions over a model. The method makes use of the mean field 

approximation, making a factorised approximation to the true posterior, although 

unlike the Laplace approximation does not need to restrict these factorised posteriors 

to a Gaussian form. Practical implementations of VB typically make use of factorised 

approximate posteriors and priors that belong to the conjugate-exponential family, 

making the required integral tractable. The procedure takes an iterative approach 

resembling an Expectation Maximisation method and whose convergence is 

guaranteed. Since the method is approximate the computational expense is 

significantly less than MCMC approaches and is also less than a Laplace 

approximation since no Hessian need be evaluated. 

 

Attias (2000) provides the original derivation of the ‘Variational Bayes Framework 

for Graphical Models’ (although is not the first person to take such an approach). He 

introduces the concept of ‘free-form’ selection of the posterior given the chosen 

model and priors, although this is ultimately limited by the need for the priors and 

factorised posteriors to belong to the conjugate exponential family (Beal 2003). A 

comprehensive example of the application of VB to a one-dimensional Gaussian 

mixture model has been presented by Penny et al. (2000). Beal (2003) has provided a 

thorough description of variation Bayes and its relationship to MAP and MLE, as well 

as its application to a number of standard inference problems. He has shown that 

Expectation Maximisation algorithm is a special case of VB. Friston et al. (2007) 

additionally has considered the VB approach and variational free energy in the 

context of the Laplace approximation and ReML. In this context they use a fixed 
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multi-variate Gaussian form for the approximate posterior, in contrast to the ‘free-

form’ approach. To ensure tractablility of the VB approach the models to which it can 

be applied are limited (Beal 2003). However, Woolrich & Behrens (2006) have 

avoided this problem, in the context of spatial mixture models, by using a Taylor 

expansion of the second order. Friston et al. (2007) have also applied their variational 

Laplace method to non-linear models by way of a Taylor expansion, this time 

assuming that the model is weakly non-linear and hence ignoring second-order and 

higher terms. Mackay (2003) has provided a brief non-technical introduction to the 

VB approach and Penny et al. (2003; 2006) have provided a more mathematical 

introduction specifically for fMRI data and the GLM, with a comparison to the 

Laplace approximation approach in the later work. 

 

In this report we present a Variational Bayes solution to problems involving non-

linear forward models. This takes a similar approach to (Attias 2000), although unlike 

(Attias 2000; Penny et al. 2000; Beal 2003) the factorisation will be over the 

parameters alone, like for example (Penny et al. 2003), since we do not have any 

hidden nodes in our model. Motivated by the approach of (Woolrich et al. 2006) we 

will extend VB to non-linear models using a Taylor expansion, primarily restricting 

ourselves, like Friston et al. (2007), by an expansion of the first order. Since the 

Variational method is iterative, convergence is an important issues and it is found that 

the guarantees that hold for pure VB do not hold for our non-linear variant, hence 

convergence is discussed further and the application of a Levenburg-Marquat 

approach is proposed. 

2. Variational Bayes  

2.1. Bayesian Inference 

The basic Bayesian inference problem is one where we have a series of 

measurements, y, and we wish to use them to determine the parameters, w, of our 

chosen model M . The method is based on Bayes’ theorem: 

 

 

P w | y,M( ) =
P y,w |M( )

P y |M( )
=
P y |w,M( )P w |M( )

P y |M( )
, (2.1) 
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which gives the posterior probability of the parameters given the data and the model, 

 
P w | y,M( ) , in terms of: the likelihood of the data given the model with parameters 

w, 
 
P y |w,M( ) , the prior probability of the parameters for this model, 

 
P w |M( ) , 

and the evidence for the measurements given the chosen model,
 
P y |M( ) . We are not 

too concerned with the correct normalisation of the posterior probability distribution, 

hence we can neglect the evidence term to give: 

 P w | y( ) P y |w( )P w( ) , (2.2) 

where the dependence upon the model is implicitly assumed. P y |w( ) is calculated 

from the model and P w( )  incorporates prior knowledge of the parameter values and 

their variability. 

 

For a general model it may not be possible (let alone easy) to evaluate the posterior 

probability distribution analytically. In which case we might approximate the 

posterior with a simpler form:q w( ) , which itself will parameterised by a series of 

‘hyper-parameters’. We can measure the fit of this approximate distribution to the true 

on via the free energy: 

 F = q w( ) log
P y |w( )P w( )

q w( )
dw . (2.3) 

Inferring the posterior distribution P w | y( )  is now a matter of estimation of the 

correctq w( ) , which is achieved by maximising the free energy overq w( ) : 

“Optimising [F] produces the best approximation to the true posterior …, as well as 

the tightest lower bound on the true marginal likelihood” (Attias 2000). 

 

PROOF 

Consider the log evidence : 

 

logP y( ) = log P y |w( )P w( )dw,

= log q w( )
P y |w( )P w( )

q w( )
dw,

q w( ) log
P y |w( )P w( )

q w( )
dw,  (2.4) 
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using Jensen’s inequality. This latter quantity is identified from physics as 

the free energy and the equality holds when q w( ) = P w | y( ) . Thus the 

process of seeking the best approximation q w( )  becomes a process of 

maximization of the free energy. 

ASIDE 

The maximisation of F is equivalent to minimising the Kullback-Liebler 

(KL distance), also known as the Relative Entropy (Penny et al. 2006), 

between q w( )  and the true posterior. Start with the log evidence: 

 logP y( ) = log
P y,w( )

P w | y( )
, (2.5) 

take the expectation with respect to the (arbitrary) densityq w( ) : 

 

= q w( ) log
P y,w( )

P w | y( )
dw,

= q w( ) log
P y,w( )

P w | y( )

q w( )

q w( )
dw,

= q w( ) log
P y,w( )

q w( )
dw + q w( ) log

q w( )

P w | y( )
dw,

= F + KL,  (2.6) 

where KL is the KL divergence between q w( )  and P w | y( ) . Since KL 

satisfies the Gibb’s inequality (Mackay 2003) it is always positive, hence 

F is a lower bound for the log evidence. Thus to achieve a good 

approximation we either maximise F or minimise KL, only the former 

being possible in this case. 

2.2. Variational approach 

To make the integrals tractable the variational method chooses mean field 

approximation forq w( ) : 

 q w( ) = qwi
wi( )

i

, (2.7) 

where we have collected the parameters in w into separate groupswi , each with their 

own approximate posterior distributionq wi( ) . This is the key restriction in the 

Variational Bayes method, making q approximate. It assumes that the parameters in 
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the separate groups are independent, although we do not require complete 

factorisation of all the individual parameters (Attias 2000). The computation of q wi( )  

proceeds by the maximisation of q wi( )  over F, by application of the calculus of 

variations this gives: 

 logqwi
wi( ) qw i

w i( ) logP y |w( )P w( )dw i  (2.8) 

where w i  refer to the parameters not in the ith group. We can write (2.8) in terms of 

an expectation as: 

 logqwi
wi( ) logP y |w( )P w( )

q
w i

, (2.9) 

where 
X

is the expectation of the expression taken with respect to X. 

PROOF 

We wish to maximise the free energy: 

 F = q w( ) log
P y |w( )P w( )

q w( )
dw , (2.10) 

with respect to each factorised posterior distribution in turn. F is a 

functional (a function of a function), i.e.F = f w,q w( )( )dw , hence to 

maximise F we need to turn to the calculus of variations. We require the 

maximum of F with respect to a subset of the parameters, wi , thus we 

write the functional in terms of these parameters alone as: 

 F = g wi ,qwi
wi( )( )dwi , 

where: 

 g wi ,qwi
wi( )( ) = f w,q w( )( )dw i

. (2.11) 

From variational calculus the maximum of F is the solution of the Euler 

differential equation: 

 

qwi
wi( )

g wi ,q wi( ),q ' wi( )( )

d

dwi q 'wi
wi( )

g wi ,q wi( ),q ' wi( )( ) = 0 , (2.12) 
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where the second term is zero, in this case, as g is not dependant 

uponq 'wi
wi( ) . Using equation (2.11) this can be written as

1
: 

 
qwi

wi( )
q w( ) log

P y |w( )P w( )

q w( )
dw i = 0 . (2.13) 

 

= qw i
w i( ) logP y |w( )P w( )dw i qw i

w i( ) logqw i
w i( )dw i

qw i
w i( ) logqwi

wi( )dw i = 0.  (2.14) 

Hence: 

 logqwi
= qw i

w i( ) logP y |w( )P w( )dw i + constant , (2.15) 

which is the result in equation (2.8). Since qwi
wi( )  is a probability 

distribution it should be normalised: 

 qwi
wi( ) =

e
I

e
I
dwi

, (2.16) 

with I = qw i
w i( ) lnP y |w( )P w( )dw i . Although often the form of q is 

chosen (e.g. use of factorised posteriors conjugate to the priors) such that 

the normalisation is unnecessary. A derivation that incorporates the 

normalisation, using Lagrange multipliers, is given by (Beal 2003). 

2.3. Conjugate-exponential restriction 

We will take the approach referred to by Attias (2000) as ‘free form’ optimization, 

whereby “rather than assuming a specific parametric form for the posteriors, we let 

them fall out of free-form optimisation of the VB objective function.” We will, 

however, restrict ourselves to priors that are conjugate with the complete data 

likelihood. The prior is said to be conjugate to the likelihood if and only if (Beal 

2003) the posterior (in this case we are interested in the approximate factorised 

posterior): 

 
    
q

w
i

w
i( ) P Y | w

i( )P w
i( )  (2.17) 

                                                

1
 Note that this is equivalent to the form used in (Friston et al. 2007):

q wi( )
F

wi

= 0  
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is the same parametric form as the prior. This naturally simplifies the computation of 

the factorised posteriors, as the VB update becomes a process of updating the 

posteriors hyper parameters. In general we are restricted by this choice to requiring 

that our complete data likelihood comes from the exponential family: “In general the 

exponential families are the only classes of distributions that have natural conjugate 

prior distributions because they are the only distributions with a fixed number of 

sufficient statistics apart from some irregular cases” (Beal 2003). Additionally, the 

advantage of requiring an exponential distribution for the complete data likelihood 

can be see by examining equation (2.8), where this choice naturally leads to an 

exponential form for the factorised posterior allowing a tractable VB solution. Hence 

VB methods typically deal with models which are conjugate-exponential, where 

setting the requirement that the likelihood come from the exponential family usually 

allows the conjugacy of the prior to be satisfied. In general the restriction to models 

whose likelihood is from the exponential family is not restrictive as many models of 

interest satisfy this requirement (Beal 2003). Neither does this severely limit our 

choice of priors (which by conjugacy will also need to be from the exponential 

family), since this still leaves a large family including non-informative distributions as 

limiting cases (Attias 2000). 

 

We now have a series of equations for the hyper-parameters of each qwi
wi( )  in terms 

of the parameters of the priors and potentially of the other factorised posteriors. Since 

the equation for qwi
wi( )  is typically dependent upon the other wi  the resultant 

Variational Bayes algorithm follows an EM update procedure: the values for the 

hyper-parameters are calculated based on the current values, these values are then 

used for the next iteration and so on until convergence. Since VB is essentially an EM 

update it is guaranteed to converge (Attias 2000). 

3. A simple example: inferring a single Gaussian 

The procedure of arriving at a VB algorithm from equation (2.8) is best illustrated by 

a trivial example. Penny & Roberts (2000) provide the VB update equations for a 

Gaussian mixture model including inference on the structure of the model, this is a 

little beyond what we wish to consider here. However, they also provide the results 
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for inferring on a single Gaussian, which we will derive here. We draw measurements 

from a Gaussian distribution with mean  and precision : 

 P yn | µ,( ) =
2

e 2
yn µ( )

2

. (3.1) 

If we draw N samples that are identically independently distributed (i.i.d.) we have: 

  . (3.2) 

We wish to infer over the two Gaussian parameters, hence we may factorise our 

approximate posterior as: 

 q µ,( ) = q µ( )q( ) . (3.3) 

Thus we need to choose factorised posteriors for both parameters. We restrict 

ourselves to priors that belong to the conjugate-exponential family; hence we choose 

prior distributions as normal for  and Gamma for . The optimal form for the 

approximate factorised posteriors is determined by our choice of priors and the 

requirement of conjugacy, thus we have a Normal distribution over  and Gamma 

distribution over  : 

 q µ | m,( ) = N µ;m,( ) =
1

2
e

1

2
µ m( )2

, (3.4) 

 q | b,c( ) = Ga ;b,c( ) =
1

c( )

c 1

bc
e b . (3.5) 

Thus we have four ‘hyper-parameters’ (m, ,b,c ) over the parameters of our posterior 

distribution. The log factorised-posteriors (which we will need later) are given by: 

 logq µ( ) =
µ m( )

2

2
+ const µ{ } , (3.6) 

 logq( ) =
b
+ c 1( ) log + const{ } , (3.7) 

where const{X} contains all terms constant with respect to X. Likewise the log priors 

are given by: 

 logP µ( ) =
µ m0( )

2

2 0

+ const µ{ } , (3.8) 

 logP( ) =
b0

+ c0 1( ) log + const{ } , (3.9) 
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where we have prior values for each of our hyper-parameters denoted by a ‘0’ 

subscript. 

 

Bayes theorem gives: 

 
   
P µ, | Y( ) P Y | µ,( )P µ( )P( ) , (3.10) 

which allows us to write down the log posterior up to proportion, which we will need 

for equation (2.8) 

 

   

L = log P Y | µ,( ) + log P µ( ) + log P( ) + const µ,{ },

=
N

2
log

2
y

n
µ( )

2

b
0

+ c
0

1( ) log
µ m

0( )
2

2
0

+
n

const µ,{ }.

 (3.11) 

We are now in a position to derive the updates for  and . 

3.1. Update on  

From equation (2.8): 

 logq µ( ) = Lq( )d . (3.12) 

Performing the integral on the right-hand side: 

 

Lq( )d ,

=
N

2
log

2
yn µ( )

2

n b0
+ c0 1( ) log

µ m0( )
2

2 0

Ga ;b,c( )d ,

=
µ m0( )

2

2 0

Ga ;b,c( )d +
N

2
+ c0 1 log Ga ;b,c( )d

1

b0
Ga ;b,c( )d

1

2
yn µ( )

2

n

Ga ;b,c( )d .

 (3.13) 

This simplifies by noting that the second and third terms are constant with respect to 

, that the integral of a probability distribution is unity, and that the integral in the 

final term is simply the first moment of the Gamma distribution. Hence: 

 Lq( )d =
µ m0( )

2

2 0

bc

2
yn µ( )

2

n

+ const µ{ } . (3.14) 

Now: 
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yn µ( )
2

n

= Nµ2 2µ yn
n

+ yn
2

n

,

= Nµ2 2µs1 + s2 ,  (3.15) 

hence, using this result and completing the square: 

 Lq( )d =
1+ N 0bc

2 0

µ
m0 + 0bcs1
1+ N 0bc

2

+ const µ{ } . (3.16) 

Comparing coefficients with the expression for the log factorised-posterior finally 

gives: 

 m =
m0 + 0bcs1
1+ N 0bc

, (3.17) 

 =
0

1+ N 0bc
. (3.18) 

Note that having ignored the terms which are constant in  we can only define q µ( )  

up to scale. If we need the correctly scaled version we can fully account for all the 

terms in our derivation, alternatively we can normalise our un-scaled q at this stage, as 

in equation (2.16). Typically finding the update over the hyper-parameters is 

sufficient, i.e. in this case we are only interested in what the parameters of our 

distributions become, we don’t care about having a correctly scaled distribution. 

3.2. Update on  

Likewise we can arrive at the update for , again starting from (2.8): 

logq( ) = Lq µ( )dµ,

=
N

2
log

2
yn µ( )

2

n b0
+ c0 1( ) log

µ m0( )
2

2 0

N µ;m,( )dµ,

=
N

2
log

b0
+ c0 1( ) log

2
yn µ( )

2

n

µ;µ,( )dµ + const{ },

=
N

2
+ c0 1 log

1

b0
+
X

2
,

 (3.19) 

where X is a function of  only: 
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X = s2 2µs1 + Nµ
2( )N µ;m,( )dµ,

= s2 2s1 µN µ;m,( )dµ + N µ2N µ;m,( )dµ,

= s2 2s1m + N m2 +( ).  (3.20) 

Comparing coefficients with the log factorised-posterior, equation (3.9), gives the 

updates for : 

 
1

b
=
1

b0
+
X

2
, (3.21) 

 c =
N

2
+ c0 . (3.22) 

Thus we now have the updates, informed by the data, for the hyper parameters. Hence 

we can arrive at an estimate for the parameters of our Gaussian distribution. Since the 

update equations for the hyper-parameters for  depend on the hyper-parameter 

values for  and vice versa, these update have to proceed as an iterative process. 

3.3. Numerical example 

Since this example is sufficiently simple it is possible to plot the factorised 

approximation to the posterior against the true posterior, as is done in Figure 1. Where 

100 samples were drawn from a normal distribution with zero mean and unity 

variance, and where the following relatively uninformative prior values were 

used:m0 = 0,  0 = 1000,  b0 = 1000,  c0 = 0.001. The VB updates were run over 1000 

iterations (more than sufficient for convergence) giving estimates for the mean of the 

distribution as 0.0918 and variance as 1.1990. Figure 2 compares the approximate 

posterior for  to the true marginal posterior, showing that as the size of the data 

increases the approximation improves. 
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Figure 1: Comparison of (log) true posterior (wireframe) to the factorised approximation 

(shaded) for VB inference of the parameters of a single Gaussian. 

 

Figure 2: Accuracy of the marginal posterior for  as the size of the data increases. 

3.4. Free energy 

The expression for the free energy for this problem is given by (Penny et al. 2000): 

 F = Lav KL q µ( ) || p µ( )( ) KL q( ) || p( )( ) , (3.23) 

where the average likelihood is: 

 Lav = 0.5N c( ) + logb( ) 0.5bc s2 + N m2
+( ) 2ms1( ) , (3.24) 

the KL divergence between the factorised posteriors and priors is given by: 
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KL q µ( ) || p µ( )( ) = 0.5 log 0 +
m2 + m0

2 + 2mm0

2v0
0.5,

KL q( ) || p( )( ) = c 1( ) c( ) logb c log c( ) + log c0( )

+c0 logb0 c0 1( ) c0( ) + logb0( ) +
bc

b0
,  (3.25) 

and x( )  is the digamma function evaluated at x (see the appendix). 

4. Variational Bayes updates for non-linear forward 

models 

Now we can turn to a more useful VB derivation that of inferring the parameters for a 

non-linear forward model with additive noise. The model for the measurements, y, is 

 y = g( ) + e , (4.1) 

where g( )  is the non-linear forward model for the measurements and e is additive 

Gaussian noise with precision : 

 
 
e N 0, 1( ) , (4.2) 

Hence: 

 P yn |( ) =
2

1

2
e

1

2
eT e

. (4.3) 

Thus for N observations we have a log likelihood of: 

 logP y |( ) =
N

2
log

1

2
y g( )( )

T
y g( )( ) , (4.4) 

where = ,{ }  is the set of all the parameters we wish to infer: those of the model 

and the noise. 

 

For VB we factorise the approximate posterior separately over the model parameters 

 and the noise parameter : 

 q | y( ) = q | y( )q | y( ) , (4.5) 

From here on the subscripts on q will be dropped as the function should be clear from 

the domain of the function. The following distributions are chosen for the priors: 

  
 
P( ) MVN ;m0 , 0

1( ) , (4.6) 
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P( ) Ga ; s0 ,c0( ) . (4.7) 

 The factorised posteriors are chosen conjugate with the factorised posteriors as: 

 
 
q | y( ) MVN ;m, 1( ) , (4.8) 

 
 
q | y( ) Ga ; s,c( ) . (4.9) 

Now we can use Bayes’ theorem equation (2.1) to get the log-posterior, which we will 

need to derive the update equations: 

 L = logP | y( ) = logP y |( ) + logP( ) + logP( ) + const{ , } , (4.10) 

where we place any terms that are constant in ,  in the final term. Hence: 

 

L =
1

2
y g( )( )

T
y g( )( ) +

N

2
log

1

2
m0( )

T

0 m0( )

c0 1( ) log
1

s0
+const ,{ }.  (4.11) 

 

We are now almost ready to use equation (2.8) to derive the updates for the 

parameters of each factorised posterior distribution. However, L (equation (4.11)) 

may not produce tractable VB updates for any general non-linear model. In this case 

we will ensure the tractability by considering a linear approximation of the model. In 

practice it may not be necessary to restrict ourselves to a purely linear approximation 

as long as we ensure that the likelihood still belongs to the conjugate-exponential 

family, we will return to this point later. We approximate g( )  by a first-order Taylor 

expansion about the mode of the posterior distribution (which for a MVN is also the 

mean): 

 g( ) g m( ) + J m( ) , (4.12) 

where J is the Jacobian (matrix of partial derivates): 

 J( )x,y =
d g( )x( )
d y

=m

. (4.13) 

This linearization means that we no longer have ‘pure’ VB. The main consequence of 

this that the guarantee of convergence for VB no longer applies. The problems 

associate with convergence will be pursued further in later. 
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4.1. Parameter update equations 

This section summarises the resulting equations for the updates of the parameters that 

will be derived in detail in the following sections. 

Forward model parameters: 

 = scJTJ + 0 , 

 mnew = scJT k + Jmold( ) + 0m0 , 

Noise precision parameters: 

 c =
N

2
+ co , 

 
1

s
=
1

s0
+
1

2
kTki +

1

2
Tr -1JTJ( ) , 

wherek = y g m( ) . 

4.2. Updates for forward model parameters 

From equation (2.8): 

 logq | y( ) Lq | y( )d , (4.14) 

The factorised log-posterior is (from (4.8)): 

 logq | y( ) =
1

2
T

+
1

2
T m +

1

2
mT

+ const{ } , (4.15) 

The right-hand side of equation (4.14): 

 

Lq | y( )d ,

=
1

2
y g( )( )

T
y g( )( )

1

2
m0( )

T

0 m0( ) + const{ } Ga ; s,c( )d ,

=
1

2
m0( )

T

0 m0( )
1

2
y g( )( )

T
y g( )( ) Ga ; s,c( )d + const{ },

=
1

2
m0( )

T

0 m0( )
1

2
sc y g( )( )

T
y g( )( ) + const{ }.

 (4.16) 

Now, using the linearization of g( )  from equation (4.12): 

 

y g( ) = y g m( ) + J m( ),

= k + J m( ),  (4.17) 
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We can write equation (4.16) as: 

 =
1

2
T

0 + scJ
TJ( ) T

0m0 + scJ k + Jm( )( ) 0m0 + scJ k + Jm( )( )
T{ } ,

 (4.18) 

Comparing coefficients with equation (4.15), gives the updates for m  and : 

 = scJTJ + 0 , (4.19) 

 mnew = scJT k + Jmold( ) + 0m0 . (4.20) 

Note that in equation (4.20) the new value of m is dependant upon its previous value. 

This is unlike VB for linear forward models (and all the other updates for this 

formulation), where the new value for each hyper-parameter is only dependent upon 

the other hyper-parameters and hyper-parameter priors. 

4.3. Updates for the noise precision 

For the noise precision posterior distribution we have from equation (2.8): 

 logq | y( ) = Lq | y( )d . (4.21) 

The log-posterior is given by: 

 logq | y( ) = c 1( ) log
s
+ const{ } , (4.22) 

and the right-hand side of equation (4.21) as: 

 

=
1

2
y g( )( )

T
y g( )( ) +

N

2
log + c0 1( ) log

1

s0
+ const{ } q( )d ,

=
N

2
+ c0 1 log

1

s0

1

2
y g( )( )

T
y g( )( )MVN ;m,( )d .

 (4.23) 

Using the linearization as in equation (4.17): 

 

y g( )( )
T
y g( )( )MVN ;m,( )d ,

= kTk m( )
T JTk kTJ m( ) + m( )

T JTJ m( ){ }MVN( )d ,

= kTk + Trace -1JTJ( ).

 (4.24) 
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where the indicated terms are zero
2
 and the following result has been used: 

 m( )
TU m( )MVN ;m, 1( )d = Tr -1U( ) U , (4.25) 

Hence equation (4.23) becomes: 

 =
N

2
+ c0 1 log

1

s0

1

2
kTk + Trace -1JTJ( ){ } . (4.26) 

Comparing co-efficients with equation (4.22) gives the following update equations: 

 c =
N

2
+ co , (4.27) 

 
1

s
=
1

s0
+
1

2
kTk +

1

2
Tr -1JTJ( ) . (4.28) 

In this case the update for c is not dependant upon the hyper-parameters for , hence it 

does not need to be iteratively determined.  

4.4. Numerical Example 

A simple example of a non-linear model will now be considered to illustrate the 

performance of this VB algorithm. The forward model takes the form of a decaying 

exponential: 

 g( ) = Ae t  (4.29) 

where = A,{ } . Figure 3 shows the fit to the data for two values of noise precision 

representing relatively large and small quantities of additive noise, values for the 

parameters used were A=1, =1 and =100 or 10, with 50 data points equally spaced 

in t between 0 and 5. Figure 4 shows group results for a range of noise precision, at 

each value 10 sets of data were generated and parameters estimated using VB, the 

mean value of the estimate is shown along with the mean estimate of the variance. 

The variance is a measure of the confidence in the estimate and as might be expected 

increases with increasing noise. 

                                                

2
 Since, for example, m( )MVN ;m,( )d = m m = 0 . 
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Figure 3: Fit of the VB estimated exponential decay model to simulated data with noise 

precisions of 100 (left) and 10 (right). 
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Figure 4: Estimated values of A and  with varying precision, average of 10 separate data 

sets at each value. Estimates of the variance are also shown for A ( ) and  (o). 

The VB approach can be compared to using a linear regression of the logarithm of the 

data as a simple estimator. This estimator, however, is ultimately unsatisfactory since 

through taking the logarithm the Gaussian noise process becomes log-Gaussian and 

hence sum-of-squares error on the linear regression is no longer optimal. A further 

problem with this approach is that by taking the log of the data we cannot handle 

negative values of g (which arise as a result of the additive noise).  
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5. Variational Bayes convergence issues 

Convergence of the Variational Bayes iterative updates is guaranteed since it is 

fundamentally a generalisation of EM (Beal 2003). However, since we here use a 

Taylor expansion to approximate a non-linear model, such a guarantee of convergence 

no longer exists, as the model seen by VB is not identical to the true model anymore. 

If convergence is simply measured by stabilisation of the parameters then it is easy to 

reach a condition where the iterations alternates between a limited set of solutions 

without settling to a stable set of values.  

 

A more rigorous method is to monitor the value of F and halt the iteration once a 

maximum has been reached. Alternatively the likelihood multiplied by the priors as 

an estimate of the posterior may be used since this is easier to calculate. However, the 

value of F is the correct measure to use since we are aiming to maximise it. The 

expression for F is given by: 

 F = q w( ) ln
P y,w( )

q w( )
dw,  (5.1) 

Hence for the non-linear forward model considered here: 

 
   

F =
sc

s
0

+
N

2
+ c

0
1 log s + c( )

1

2
m - m

0( )
T

0
m - m

0( ) + Tr -1

0( ){ }
1

2
k

T
k + Tr -1

J
T
J( ){ } s logc log c( )

c +
N

2
+ c 1 log s + c( )

+
1

2
logdet( ) + constant,  (5.2) 

where (c) is the digamma function as defined in the appendix. 

 

Since the non-linear version of VB is deviates from an EM approach the value of F 

during iteration may pass through a maximum and start to decrease again, this is 

associated with ill conditioning of the matrix inversion is required in equation (4.20) 

for the calculation of the means for the model parameters. If the precision matrix is ill 
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conditioned for inversion this can produce spurious solutions that show in an increase 

in F. This may arise because the algorithm makes a step based on the linear 

approximation to the model, which will be mis-directed in regions where the model is 

highly non-linear. Often if iteration is allowed to proceed past this point improvement 

in F may recur. Therefore, one approach to reach convergence is to halt only once the 

value of F has decreased at an iteration and has not improved even after a further 

number of iterations set empirically, i.e. even after a decrease in F take a further 

number of ‘trial’ steps to test if the algorithm can pass though the problem. 

 

Alternatively the case of an ill condition matrix inversion within an iterative 

estimation scheme is a well know problem and can be dealt with using Levernburg-

Marquat (L-M) approach, e.g. (Andersson 2007; Friston et al. 2007). The L-M 

approach deals with a minimization scheme of the form: 

 new = old + H
1 , (5.3) 

i.e. an incremental update  in the parameter  scaled by an inverted matrix, that 

typically is a Hessian. If the convergence fails it will typically be because H becomes 

negative definite or poorly conditioned (Andersson 2007). L-M deals with this 

problem by introducing a scalar, , initialised to a small value: 

 new = old + H + diag H[ ]( )
1

. (5.4) 

If this achieves an improvement in the convergence measure then we accept the new 

value of , if not then we increment . Ultimately if we do not find an improvement 

in our convergence measure then we keep incrementing until the matrix that we are 

inverting becomes diagonally dominant with large values and hence equation (5.4) 

reduces to new = old  and we conclude that we cannot find a better solution. 

 

The L-M scheme is implemented in the Variational Bayes on the update for the means 

of the forward model parameters: 

 m = mold + + diag[ ]( )
1

, (5.5) 

where: 

 = JTX y g m( ) + Jm( ) + 0m0( ) mold . (5.6) 
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If the convergence measure falls, i.e. takes a backward step, then an update according 

to equation (5.5) is attempted with  = 0.01, during this update all the other (i.e. 

noise) parameters are not updated. If this results in a reduction in the F then the VB 

updates proceed with these new values for the forward model parameter means, 

otherwise  is increased by a factor of 10 and the process repeated until F increases. 

If no improvement can be found, i.e.   reaches a large value at which no change in m 

is called for by equation (5.5), then we halt. During this LM update phase the noise 

parameters and the value of the model parameter precisions are not updated, only the 

means alone. We only resume ‘normal’ VB updates if  returns to its original value.  

 

Essentially by using an LM approach we seek to reduce the size of step made by the 

algorithm when the Talyor expansion is a poor approximation to the model. However 

applying LM to the parameter means within VB is an artificial interference into the 

updates and whilst it will always achieve convergence it seems likely that it will end 

up in some local minimum. In practice results produced where the LM approach to 

convergence is applied compares well with those using the ‘trial’ method described 

above. However, in a number of cases it is found (by monitoring the value of F) that 

the ‘trial’ method produces more optimal solutions and typically with fewer iterations. 
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7. Appendix – function definitions 

The Gamma distribution may be defined as: 

 Ga x;b,c( ) =
1

c( )

xc 1

bc
e

x

b . (6.1) 

The di-gamma function is defined as: 

 x( ) =
d

dx
ln x( ) =

' x( )

x( )
. (6.2) 
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