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There has been much recent interest in using magnetic resonance

diffusion imaging to provide information about anatomical connecti-

vity in the brain, by measuring the anisotropic diffusion of water in

white matter tracts. One of the measures most commonly derived from

diffusion data is fractional anisotropy (FA), which quantifies how

strongly directional the local tract structure is. Many imaging studies

are starting to use FA images in voxelwise statistical analyses, in order

to localise brain changes related to development, degeneration and

disease. However, optimal analysis is compromised by the use of

standard registration algorithms; there has not to date been a

satisfactory solution to the question of how to align FA images from

multiple subjects in a way that allows for valid conclusions to be drawn

from the subsequent voxelwise analysis. Furthermore, the arbitrariness

of the choice of spatial smoothing extent has not yet been resolved. In

this paper, we present a new method that aims to solve these issues via

(a) carefully tuned non-linear registration, followed by (b) projection

onto an alignment-invariant tract representation (the ‘‘mean FA

skeleton’’). We refer to this new approach as Tract-Based Spatial

Statistics (TBSS). TBSS aims to improve the sensitivity, objectivity and

interpretability of analysis of multi-subject diffusion imaging studies.

We describe TBSS in detail and present example TBSS results from

several diffusion imaging studies.
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Introduction

The diffusion of water in brain tissue is affected by the local

tissue microstructure; for example, it diffuses more easily along the

major axis of a white matter fibre bundle than perpendicular to it
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(Moseley et al., 1990). Magnetic resonance diffusion tensor

imaging (DTI) is sensitive to water diffusion characteristics (such

as the principal diffusion direction and the diffusion anisotropy)

and has therefore been developed as a tool for investigating the

local properties of brain tissues such as white matter tracts (Le

Bihan, 2003). There has also been a great deal of interest in using

diffusion anisotropy as a marker for white matter tract integrity, for

example, for disease diagnosis, tracking disease progression,

finding disease sub-categories, studying normal development/

aging, and as complementary information to investigating normal

brain function (Horsfield and Jones, 2002; Lim and Helpern, 2002;

Moseley, 2002; Neil et al., 2002; Pagani et al., 2005).

Diffusion anisotropy describes how variable the diffusion is in

different directions and is most commonly quantified via a measure

known as fractional anisotropy (FA) (Pierpaoli and Basser, 1996).

It is highest in major white matter tracts (maximum theoretical

value 1) and lower in grey matter while approaching 0 in cerebro-

spinal fluid. As a marker for tract integrity, FA is a useful quantity

to compare across subjects as it is computable voxelwise and is a

scalar value that is independent of the local fibre orientation (and

therefore a relatively objective and straightforward measure to

compare across subjects). Some researchers have simply summa-

rised diffusion characteristics globally (for example, histogram-

based summary measures of fractional anisotropy (Cercignani et

al., 2001, 2003)), in order to compare different subjects. However,

most recent work has been interested in spatially localising

interesting diffusion-related changes. Many studies have, to this

end, followed similar approaches to voxel-based morphometry

(VBM, originally developed for finding local changes in grey

matter density in T1-weighted structural brain images (Ashburner

and Friston, 2000; Good et al., 2001)). In VBM-style FA analysis,

each subject’s FA image is registered into a standard space, and

then voxelwise statistics are carried out to find areas which

correlate to the covariate of interest (e.g., patients vs. normals,

disability score, age).

http://www.sciencedirect.com
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There has been much debate about the strengths and

limitations of VBM (Bookstein, 2001; Ashburner and Friston,

2001; Davatzikos, 2004; Ashburner and Friston, 2004). Some

researchers continue to doubt the general interpretability of the

results from this approach, primarily because there can be

ambiguity as to whether apparent changes are really due to

change in grey matter density or simply due to local misalign-

ment, though it does seem that through careful application and

validation, structural imaging studies using VBM can draw valid

conclusions (e.g., Watkins et al., 2002). However, the potential

problems with VBM-style approaches for data such as multi-

subject FA images have not yet been investigated fully. In

particular, this use raises a serious question, which has not yet

been satisfactorily answered: how can one guarantee that any

given standard space voxel contains data from the same part of

the same white matter (WM) tract from each and every subject? In

other words, how can we guarantee that registration of every

subject’s data to a common space has been totally successful, both

in terms of resolving topological variabilities and in terms of the

exact alignment of the very fine structures present in such data? A

second problem relates to the standard practice of spatially

smoothing data before computing voxelwise statistics—the

amount of smoothing can greatly affect the final results, but

there is no principled way of deciding how much smoothing is the

‘‘correct’’ amount (Jones et al., 2005). (Smoothing also increases

effective partial voluming, a problem with VBM-style approaches

particularly when applied to data such as FA; see Discussion for

more comment on this.)

In this paper, we propose an approach to carrying out localised

statistical testing of FA (and other diffusion-related) data that

should alleviate the alignment problems. We project individual

subjects’ FA data into a common space in a way that is not

dependent on perfect nonlinear registration. This is achieved

through the use of (a) an initial approximate nonlinear registration,

followed by (b) projection onto an alignment-invariant tract

representation (the ‘‘mean FA skeleton’’). No spatial smoothing

is necessary in the image processing. We refer to this new approach

as Tract-Based Spatial Statistics (TBSS). In the next section, we

discuss, in slightly more depth, VBM-style approaches, and review

some alternative approaches published to date. In following

sections, we describe the proposed approach in detail, giving

various example images illustrating the different analysis stages

involved. Finally, we present example TBSS results from several

DTI-based imaging studies.
Background: analysis of multi-subject diffusion data

VBM—overview and application to diffusion data

Voxel-based morphometry (Ashburner and Friston, 2000; Good

et al., 2001) has been used in many structural imaging studies,

looking for localised differences in grey matter density, typically

between two groups of subjects. The common approach can be

simply summarised:

& (Optional) Create a study-specific registration template by

aligning all subjects’ structural images to an existing standard

space template image (such as the MNI152). Average all

aligned images to create the new template, and optionally

smooth.
& Align all subjects’ structural images to the chosen template,

normally first using affine and then low degrees-of-freedom

nonlinear registration.

& Segment each subject’s structural image into different tissue

types. Generally use only the grey matter (GM) segmentation

output.

& Smooth the segmentation output data. This is done for several

reasons. First, smoothing of grey matter segmentation output

produces an image which is intended to represent local ‘‘grey

matter density’’—i.e., producing a measure of the local balance

between the count of GM and non-GM voxels. Second, the

smoothing helps ameliorate the effects of misalignment of

structures when the registration is imperfect. Third, it can

increase sensitivity if the extent of smoothing matches the size

of an effect of interest. Fourth, smoothing renders the data more

Gaussian distributed, improving the validity of the commonly

used Gaussian random field (GRF) theory thresholding

approach. Typically between 4 and 16-mm full-width half

maximum (FWHM) smoothing (with a Gaussian linear filter) is

applied.

& Carry out voxelwise statistics, using any relevant covariates for

the design matrix. A simple example would model group

membership (patient and control), with appropriate contrasts

comparing the group means. The standard approach is to use

simple univariate statistics, meaning that each voxel is

processed separately—the data for each voxel constitute a

1D vector of values, where that one dimension is subject

number, and the model is fit separately to each voxel’s 1D data

vector.

& Threshold the resulting statistical T, F or Z image, taking into

account multiple comparison correction. This is typically done

using GRF (Worsley et al., 1992), using either a voxel-based or

cluster-based approach (though extent-based thresholding can

lead to false positives in VBM due to smoothness non-

stationarity (Ashburner and Friston, 2000)).

There are also various optimisations (Good et al., 2001) that

have been suggested to the above analysis protocol, such as using

the GM segmentation to drive the registration (instead of the raw

structural images), to make the registration better conditioned, and

modulating the segmentation output after nonlinear registration, in

order to compensate for local changes in volume caused by the

alignment process.

VBM is most commonly carried out using the SPM software

package (as an indication of this, all the references in the following

paragraph used SPM), though the approach is sufficiently

straightforward that several other freely available packages have

also been used for ‘‘VBM-style’’ analyses. One of the reasons

VBM has become popular is that it allows one, subject to

interpretation caveats, to find changes anywhere in the brain—it

is not necessary to prespecify regions or features of interest.

Recently, researchers have applied VBM-style analysis to test

for localised changes in diffusion-related images. Most commonly,

this has involved testing FA images for voxelwise differences

between two groups of subjects. The registration is performed

either using structural images or by using the FA images directly.

No segmentation step is necessary. Smoothing is usually carried

out (with no general agreement on how much is appropriate) before

running standard voxelwise statistics and thresholding. Typical

examples of this kind of approach can be found in Simon et al.

(2005), studying chromosome 22q11.2 deletion syndrome, using
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12-mm FWHM smoothing (Rugg-Gunn et al., 2001; Eriksson et

al., 2001), studying epilepsy, using 8-mm FWHM smoothing

(Barnea-Goraly et al., 2003), studying fragile X syndrome, using 4-

mm FWHM smoothing and (Büchel et al., 2004), testing for L-R

asymmetry and handedness, using both 4- and 12-mm FWHM

smoothing.

Alignment issues in VBM-style analyses

Various papers (Bookstein, 2001; Ashburner and Friston, 2001;

Davatzikos, 2004; Ashburner and Friston, 2004) have discussed the

limitations and strengths of VBM-style approaches. It has been

observed in particular that one must be very careful not to

misinterpret residual misalignments. How can one guarantee that

any given voxel (in the final space in which voxelwise statistics will

be carried out) contains data from anatomically corresponding

regions—i.e., the same part of the same white matter tract from each

and every subject? In the context of VBM-style analysis of FA data,

consider the following scenario: a patient group includes indivi-

duals with greater ventricular sizes than a control group. The two

groups, however, have the same basic white matter integrity.

Because of the differences in ventricular configuration, conven-

tional (low to medium degrees-of-freedom) registration approaches

will shift the anterior section of the corpus callosum (CC) anteriorly

in the patient group relative to the controls; registration of the data

(and subsequent smoothing) is unlikely to fully remove this group

difference in alignment. When voxelwise statistics are carried out,

this residual misalignment shows up as a group difference in FA; at

the front of the CC, it appears that FA(patients) > FA(controls),

while at the back, the reverse is implied.

This problem is discussed further in Simon et al. (2005), where

the authors are careful to interpret apparent FA changes as being in

fact due to changes in ventricle size. A further example of this

danger can be seen in Vangberg et al. (2005), where the results are

strongly suggestive of a shift of the pyramidal tract, rather than a

true change in WM integrity.

Some researchers, aware of this problem, use careful post-stats

analyses to help disambiguate the interpretation of apparent

differences. For example, Sommer et al. (2002) used a standard

VBM-style approach (using 6-mm FWHM smoothing) and then

checked afterwards that the alignment was reasonable, looking at

the WM-masked region-of-interest (ROI) in the unsmoothed FA

images, near the reported difference. However, the reported FA

difference is very close to cortical grey matter, and it is difficult to

be sure that differences in GM/WM partial volume effects have not

contributed to the result.

There have been various papers presenting investigations of

alignment issues specific to diffusion tensor data. (Jones et al.,

2002) use FA to drive affine alignment across subjects. Park et al.

(2003) investigates alignment when driven by a variety of

diffusion-derived measures; high degrees-of-freedom nonlinear

registration is used, and alignment success is quantified via

similarity of final tractography maps. It is shown that using all 6

tensor components to drive the registration similarity cost function

gives better overall alignment than other combinations of DTI-

derived information, including FA (although the differences were

not large). In Park et al. (2004), this approach was then used to

compare white matter structure in schizophrenics relative to

controls. Their registration does appear to help with the alignment

issues discussed above, but, even with this relatively sophisticated

registration approach, the authors state that there were still ‘‘some
registration errors in the boundary of narrow fibre bundles’’ and,

for this reason, did not directly compare their VBM-based

asymmetry tests between schizophrenics and controls.

It would appear that in general, it is not safe to assume that

(even high degrees-of-freedom nonlinear) registration can align FA

data sufficiently well across subjects to allow simple unambiguous

interpretation of voxelwise statistics. Also, if one cannot guarantee

that alignment is ‘‘correct’’, then it must be assumed that sensitivity

to true differences is suboptimal.

The registration problem is not resolved even if one takes the

degrees-of-freedom to the extreme, forcing all images to look

extremely similar (this is an option with some nonlinear

registration approaches); although it may be possible to distort

one image to look very much like another, one does not necessarily

have confidence that any given structure has in fact been aligned to

that same structure in the other subject. Some nonlinear registration

methods are able to go so far in making one image look like

another that they can even break the ‘‘topology’’ of the image being

distorted—for example, a single fibre bundle may be split into two

disconnected bundles, or two distinct tracts could be merged into

one.

Smoothing issues in VBM-style analyses

A second problem with VBM-style analyses lies in the

arbitrary choice of smoothing extent. Smoothing can help

ameliorate residual misalignments, though not in a well-con-

trolled way. It can also help improve sensitivity in the detection

of changes, if the extent of smoothing is matched to the spatial

extent of the structure of interest. However, it is not generally

known in advance what this will be, so there is no principled way

to choose the smoothing extent. If one were to try a range of

smoothing extents, the final interpretation can become more

confused, and multiple-comparison corrections need to be made

more aggressive.

This issue is investigated in detail in Jones et al. (2005), where

it is shown that the final results (of VBM-style FA analysis of

schizophrenia data) depend very strongly on the amount of

smoothing. Different smoothing extents (from 0- to 16-mm

FWHM) are applied, and apparent group differences appear and

disappear across the different tests. Likewise, Park et al. (2004)

also investigated asymmetry in schizophrenia, using 3-, 6-, and 9-

mm FWHM smoothing; several of the apparent asymmetries were

quite different in the different cases.

As well as the problem of the arbitrariness of choice of

smoothing extent, smoothing increases the partial voluming

problem; one would like to know whether any estimated change

in FA is due to a change in FA in white matter rather than a change

in the relative amounts of different tissue types, but smoothing

exacerbates this ambiguity. If possible, it would be good to obviate

the need for spatial smoothing of diffusion data in such

applications.

Alternative strategies for localising change

A simple alternative to VBM-style FA analysis is to specify an

ROI, usually carried out in practice by hand, separately for each

subject (e.g., Ellis et al., 1999; Kubicki et al., 2003). FA values are

taken from the ROI(s) and then compared across subjects. In the

centres of the largest tracts this can be a reliable approach;

however, it can be hard to objectively place ROIs for smaller/
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neurons all following a similar anatomical path (at least locally), while

‘‘tract’’ is sometimes used to mean individual axons, but more commonly to

fibre bundles. In this paper, we generally intend the latter and therefore use

the terms ‘‘tract’’ and ‘‘fibre bundle’’ interchangeably.
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thinner tracts, particularly given partial volume issues. Further-

more, this kind of approach limits a study to only being sensitive to

change in those few parts of the brain where ROIs are placed. See

references in Park et al. (2003) for more examples of this kind of

approach.

More sophisticated approaches use tractography (fibre bundle

tracking, e.g., Conturo et al., 1999; Behrens et al., 2003a) to

identify voxels from which to take FA values for cross-subject

comparison. In such approaches, the relevant tracts are usually

identified by initialising/constraining tractography using hand-

drawn ROIs. For example, in Pagani et al. (2005), DTI-related

changes in the pyramidal tracts were observed in patients with

early MS-like symptoms. ROIs were hand-drawn in a standard

space to identify the pyramidal tracts. These were then used to seed

streamlining-based tractography in each subject’s original DTI

data, to define in each the pyramidal tract. The results were then

averaged to provide a mean pyramidal tract mask. Tests were then

carried out on various DTI-related metrics by affine-aligning

patient data into MNI152 space and taking summary statistics

using all voxels within this mask.

In the above approach, tractography is used to determine a

standard space ROI, but the final analysis still depends critically on

the accuracy of alignment of each subject to the standard space. In

Jones et al. (2006), this problem is avoided by using each subject’s

tractography results to estimate mean FA in several major tracts,

summarising each tract with a single mean FA value before

comparing normals and schizophrenics.

A still more sophisticated approach is to compare the

variation of FA values along the tractography-derived fibre

bundles directly across subjects, by first parameterising the space

of the fibre bundle, e.g., according to distance along the bundle.

This does not then rely strongly on perfect cross-subject

alignment. (In our method described below, we attempt to

combine the strength of this kind of approach with the

investigative power and ease-of-use of voxelwise analyses.) An

example can be found in Gong et al. (2005). Tractography is

used to find cingulum bundles, and FA is parameterised

according to the position within a tract. This allows cross-

subject comparison of FA values along the given tract without

requiring accurate final registration. In a similar approach, Gerig

et al. (2005) finds tract bundles based on an initial hand-drawn

ROI, and then parameterises FA (and other DTI-derived

measures such as ADC and tensor eigenvalues) along the

resulting bundles. For a given subject scanned on 6 occasions,

all measures are shown to be reproducible (at one point on the

bundle) to between 5 and 10%.

A limitation of such approaches is that only those tracts that can

be reliably traced (and separated from other tracts) can be used to

create relevant FA parameterisation. As there is not at present a

robust, fully automated, way of finding and classifying all brain

tracts, only those tracts that have been specifically analysed

(usually using hand-drawn ROIs and various termination heuris-

tics) can be investigated. A second problem is that it may not be

straightforward to objectively and accurately identify the effective

ends of tracts of interest, creating possible problems for parameteri-

sation that is objectively consistent across subjects. A third

limitation relates to partial volume effects at the edges of the

tracts. By definition, the fibre bundle ‘‘edges’’ (as found by

tractography) contain some non-bundle partial volume fraction; in

general, the amount of non-tract partial volume included in the FA

parameterisation is not well controlled, causing some arbitrariness
in the final sampled FA values when using certain ways of

measuring FA, such as mean value across the tract cross-section.
Method: tract-based spatial statistics

Overview of TBSS

As discussed above, strengths of VBM-style analyses are that

they are fully automated, simple to apply, investigate the whole

brain, and do not require prespecifying and prelocalising regions or

features of interest. Limitations include problems caused by

alignment inaccuracies, and the lack of a principled way for

choosing smoothing extent. Tractography-based approaches have

fairly complementary advantages and disadvantages. They can

overcome alignment problems by working in the space of individual

subjects’ tractography results and for similar reasons do not

necessarily require presmoothing. However, such approaches do

not allow the whole brain to be investigated and generally require

user intervention in order to define the tracts to be used.

In TBSS, we attempt to bring together the strengths of each

approach. We aim to solve the alignment and smoothing issues,

while being fully automated, investigating the ‘‘whole’’ brain—not

requiring prespecification of tracts of interest. This is achieved by

estimating a ‘‘group mean FA skeleton’’, which represents the

centres of all fibre bundles1 that are generally common to the

subjects involved in a study. Each subject’s FA data is then

projected onto the mean FA skeleton in such a way that each

skeleton voxel takes the FA value from the local centre of the

nearest relevant tract, thus hopefully resolving issues of alignment

and correspondence. To briefly summarise the TBSS approach:

& Identify a common registration target and align all subjects’ FA

images to this target using nonlinear registration. At this stage,

perfect alignment is not expected or required.

& Create the mean of all aligned FA images and apply ‘‘thinning’’

(non-maximum-suppression perpendicular to the local tract

structure), to create a skeletonised mean FA image. Threshold

this to suppress areas of low mean FA and/or high inter-subject

variability.

& Project each subject’s (aligned) FA image onto the skeleton, by

filling the skeleton with FA values from the nearest relevant

tract centre. This is achieved, for each skeleton voxel, by

searching perpendicular to the local skeleton structure for the

maximum value in the subject’s FA image.

& Carry out voxelwise statistics across subjects on the skeleton-

space FA data.

We now describe each step in more detail.

Preprocessing

A single diffusion dataset typically comprises between 7 and

200 separate 3D images; these encode diffusion strength in various

different directions, as well as including one or more images with
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scale of the typical spacing of different parts of the final skeleton, and hence

the amount of movement needed to prealign FA images, as well as the

maximum search distance needed to project each subject’s FA onto the

skeleton—see later for further description of these aspects of the approach.
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no diffusion weighting. A common preprocessing step is to align

all the images with each other before estimating diffusion-related

measures such as the diffusion tensor, principal diffusion direction,

and fractional anisotropy. This prealignment (similar to motion

correction in fMRI data) is both to correct for head motion during

the session and to reduce the effects of gradient coil eddy currents

(Horsfield, 1999). While head motion mostly causes rigid-body

image motion, eddy currents appear as a (slightly more general)

linear image transformation, to first order. We therefore use FLIRT

(Jenkinson and Smith, 2001; Jenkinson et al., 2002) to apply full

affine (linear) alignment of each image to the no-diffusion-

weighting image, using the mutual information cost function.

After data prealignment, the diffusion tensor can be calculated,

normally using a simple least squares fit of the tensor model to the

diffusion data. From this, the tensor eigenvalues can be calculated,

describing the diffusion strength in the primary, secondary and

tertiary diffusion directions. From these, it is straightforward to

calculate FA (Basser et al., 1994; Pierpaoli and Basser, 1996).

Finally, we apply BET (Smith, 2002) brain extraction to the

non-diffusion-weighted image, to exclude non-brain voxels from

further consideration.

Nonlinear alignment

The first step in aligning multiple FA images to each other is a

voxelwise nonlinear registration, driven by the FA images

themselves. We do not want to change the fundamental nature of

the images during this alignment – we want to keep the general

tract structure intact – but we need to align the images sufficiently

well that the second stage (projection of data onto a tract skeleton)

functions correctly. We therefore need nonlinear alignment having

intermediate degrees of freedom (DoF).

At the low-DoF extreme (for example, affine-only registration

with no nonlinear component), there is sufficiently little guarantee

of alignment of even the most major tracts, that voxelwise statistics

across subjects is unwise.

At the high-DoF extreme (high-dimensional warping), it is

possible to align two images almost perfectly, so that they look

almost exactly like each other; the problem here is that in order to

achieve this, the original images have been warped so much that

one may not have preserved the overall structure, i.e., how the

different features (in this case, different white matter tracts) relate

to each other. A given tract (e.g., cingulum bundle) may be warped

so far that it becomes aligned to a totally different tract in the target

image (e.g., corpus callosum). Furthermore, the warp may be

‘‘non-homologous’’ – image topology may be changed – for

example, two tracts may be merged into one or one tract may be

split into two. In summary, current high-DoF methods cannot be

considered to produce reliable homologies.

We want to avoid either extreme—it is important to align

subjects’ data together to make local comparison possible, but with

some restriction applied to the warp, so that the overall structure

topology is preserved. To this end, we use a generic nonlinear

registration method which is capable of high-dimensional warping

but which can also be robustly controlled to limit the effective

dimensionality, to give us the desired restriction on warp complex-

ity. We have chosen to use a nonlinear registration approach based

on free-form deformations and B-Splines (Rueckert et al., 1999)

which is available from www.doc.ic.ac.uk/~dr as a package called

the ‘‘Image Registration Toolkit’’ (IRTK). The aim of free-form

deformations is to deform an image by moving the control points of
an underlying mesh. The warp field applied is found for image

positions between the mesh control points using B-spline interpo-

lation. The optimal warp is found by moving the control point

locations until the registration cost function is minimised. This cost

function attempts to both optimise a voxel-based similarity measure

at the same time as imposing regularisation (smoothness) on the

warp field.

For this application, we have used cross-correlation for the

similarity measure, as an inter-modal cost function is not needed

when aligning different FA images together. We set a control point

spacing of 20 mm and set additional regularisation to zero2. Thus,

the smoothness of the warp field is determined purely by the

control point spacing, which here is chosen to be large enough to

achieve what is considered to be an appropriate degree of warp

complexity, as discussed above. The nonlinear registration is

preceded by affine-only registration, to achieve initial alignment.

Running IRTK with these options takes approximately 20 min on a

modern desktop computer, to align a single FA image to a different

FA target.

Identifying the target for alignment

Upon investigation of the quality of registrations obtained by

applying IRTK to typical FA images (typical resolutions being

between 2 � 2 � 2 mm3 and 4 � 4 � 4 mm3), it was found

that registration is more successful if the target is a real FA

image rather than a (blurred) average FA image. This is perhaps

unsurprising, as a single subject will be sharper than an

averaged image, giving ‘‘better’’ information to drive the

alignment, as long as topology is sufficiently similar to the

input image.

We therefore identify a single subject’s FA image to act as the

target for all nonlinear registrations. We want this subject to be the

‘‘most typical’’ subject of the entire group, i.e., to be the target

image which minimises the amount of warping required for all

other subjects to align to it. To find this most typical subject, we

register every subject to every other subject, summarise each warp

field by its mean displacement, and choose the target subject as

being the one with the minimum mean distance to all other

subjects. Because the affine part of these registrations is robust and

does not contain any interesting information about a subject’s tract

topography/topology (in this context), the effect of the initial affine

transformation is subtracted from the estimation of a warp field’s

mean displacement distance.

An alternative, faster, approach, would be to choose an initial

target at random, register every subject to this, and use warp field

concatenations to estimate the above. However, given the complex,

multidimensional search strategy involved in finding an optimal

warp between two images, and given possible topology changes

between subjects, it is safer to take the full search strategy

described above. We tested whether it was more robust to

summarise a warp field with the median displacement instead of

the mean, but this made no difference to the choice of optimal

http:www.doc.ic.ac.uk/~dr


ARTICLE IN PRESS

Fig. 2. Examples of fibre bundles; a ‘‘thick sheet’’ with a thin surface as its

skeleton, and a ‘‘tube’’, with a line as its skeleton.
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target in all 10 studies tested. See also (Kochunov et al., 2005;

Guimond et al., 2000) for further discussion of mean atlas spaces.

Creating the mean FA image and its skeleton

After identifying the most typical subject as the target, all

subjects’ FA images are aligned to this, and then the entire aligned

dataset is affine-transformed into 1 � 1 � 1 mm3 MNI152 space;

all subsequent processing is carried out using this space and

resolution. The choice of MNI152 space is made for convenience

of interpretation and display. The choice of a higher resolution here

than typical diffusion datasets means that there is no significant

interpolation blurring (i.e., increase in partial voluming) when the

nonlinear warp plus standard-space affine transformation is applied

to each individual subject’s data. Using an even higher resolution

than this would bring increasingly little benefit, but simply result in

slower computation and unnecessarily large data files. Note,

however, that if and when higher resolution diffusion data is

acquired, it will be straightforward to increase the working

resolution for the post-alignment steps.

The transformed FA images are now averaged to create a mean

FA image. This image is locally relatively smooth, both because of

the effect of averaging FA images across subjects, and because of

the resolution upsampling. Fig. 1 (top-left) shows an example axial

slice through a mean FA image.
Fig. 1. Different skeletonisation stages. (A) Original mean FA image with final sk

stage 1, using local FA centre-of-gravity to find tract perpendiculars. (C) Skeleto

perpendiculars. (D) Result of smoothing the perpendicular direction vector image

because of its 3D nature; where the fibre bundle surface lies partially parallel to the

a different 3D slicing.
The mean FA is now fed into the tract skeleton generation, which

aims to represent all tracts which are ‘‘common’’ to all subjects. The

skeleton will represent each such tract as a single line (or surface)

running down the centre of the tract. Most contiguous sets of tracts

appear topologically to be curved sheets of a certain thickness (e.g.,

corpus callosum), or, less frequently, curved ‘‘tubes’’ (e.g., the

cingulum bundle); see Fig. 2. In the former case, we want the

skeleton to be a thin curved surface running down the centre of the

sheet, and in the latter, we want the skeleton to be a curved line

running down the centre of the tube. Away from the centre surface or

line, the FA values fall off gradually, becoming very low as one
eleton and the ROI used for the remaining sub-images. (B) Skeletonisation

nisation after stage 2, using FA image second-derivative to find remaining

. Note that the tract appears more than a single voxel thick in some places,

plane being viewed, it will not appear thin, though would do if viewed with
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Fig. 3. Example of (1) a voxel where the local centre-of-gravity (CofG)

points in the local tract perpendicular direction, and (2) a voxel lying on the

tract centre.
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moves out of white matter. To achieve skeletonisation we first

estimate the local surface perpendicular direction (at all voxels in the

image) and then perform non-maximum-suppression in this

direction. In other words, a search is made along all voxels in the

local ‘‘tract perpendicular direction’’, and the voxel with the highest

FA is identified as the centre of the tract.3

The local tract surface orientation is found as follows. If the

voxel of interest lies away from a tract centre, FA will be higher in

the neighbouring voxels on one side of the voxel than on the

other—the direction in which it is highest points towards the

nearest tract centre. We quantitate this by finding the centre-of-

gravity of the local 3 � 3 � 3 voxel neighbourhood (effectively we

are taking the first derivative of the FA image). The vector from the

current voxel centre to the local centre-of-gravity (CofG, of FA

values) should point towards the tract centre, in a direction

perpendicular to the local tract structure. Therefore, as long as the

local CofG does not lie close (within 0.1 mm) to the centre of the

current voxel, the perpendicular direction is assumed to be given

by this vector. See Fig. 3 for an example.

Alternatively, if the local CofG does lie close to the centre of

the current voxel, it is assumed that one is very near to the tract

centre, and an alternative method of estimating the perpendicular is

used. In this case, the direction of maximum change is found; from

the local 3 � 3 � 3 voxel neighbourhood, the mean of each

opposing pair of voxels is subtracted from the centre value, and the

direction which causes this difference to be maximised is assumed

to be perpendicular to the local tract (effectively we are taking the

second derivative of the FA image).

Finally, we regularise the estimated tract perpendicular direc-

tion in order to improve estimation robustness; we replace each

direction estimate with the mode of the quantised local 3 � 3 � 3

set of estimated directions.

We are now in a position to search for the centre of each tract, i.e.,

form the tract skeleton. At each voxel we compare the FAvalue with

the two closest neighbours on each side, in the direction of the tract

perpendicular. If the FA value is greater than the neighbouring

values, then the voxel is marked as lying on the skeleton.

Fig. 1 illustrates the various steps involved in turning a mean FA

image into an FA tract skeleton. The top-left image shows an

example axial slice through a mean FA image; overlaid is the final

skeleton, and the ROI used for the remaining sub-images is shown.

In top-right are the results of the first stage of estimation of the

perpendicular direction to the local tract structure; the lines show the

directions estimated on the basis of the local FA centre-of-gravity.

Note that these are only estimable away from the tract centres. In

bottom-left are the results after the second stage; where centre-of-

gravity has not estimated the tract perpendicular, the FA image

second derivative is used. Thus the local perpendicular direction is

now estimated at all voxels where FA is not very close to zero. In

bottom-right the direction estimates have been smoothed by taking

the mode of the directions in the 3 � 3 � 3 neighbourhood.

We now have an FA skeleton which should represent the

different tract structures in the mean FA image. This is thresholded

in order to restrict further analysis to points which are within white

matter which has been successfully aligned across subjects. We

have found that thresholding the mean FA value between 0.2 and
3 The skeleton generation is probably not strongly dependent on the exact

image processing method used here—for example, other thinning methods

such as finding crest lines or medial axes would probably give similar

results.
0.3 successfully excludes voxels which are primarily grey matter or

CSF in the majority of subjects and also means that the skeleton

does not run right up to the outermost edges of the cortex, where

the constraints on the nonlinear alignment mean that the most

variable (across subjects) tracts are not well aligned. In other

words, we are excluding from further analysis those parts of the

brain where we do not believe that we can assume good tract

correspondence across subjects.

Note that the skeleton tends to be disconnected at many

junctions; this is primarily due to the fact that the tract

perpendicular direction is not well-defined at junctions, and hence

the non-maximum suppression ‘‘perpendicular’’ to the tract cannot

function well. One could attempt to force connectivity at junctions,

for example, through standard morphological processing, but this

would probably be dangerous; the next stage, where FA data get

projected onto the skeleton, would also not be well conditioned at

junctions (for the same reason—i.e., lack of a well-defined

projection direction), unless a much more sophisticated projection

method was developed specifically for junctions.

Projecting individual subjects’ FA onto the skeleton

We now ‘‘project’’ each subject’s aligned FA image onto the

mean FA skeleton. The aim here is to account for residual

misalignments between subjects after the initial nonlinear registra-

tions. At each point in the skeleton, we search a given subject’s FA

image in the (already-computed) perpendicular tract direction to

find the maximum FA value and assign this value to the skeleton

voxel. This effectively achieves alignment between the skeleton

and this subject’s FA image without needing perfect nonlinear

preregistration. Any systematic difference in exact tract location

between groups of subjects will thus not bias the comparison of FA

values between the groups.

Note that this approach is effectively achieving fine alignment

across subjects in the tract perpendicular, not in the direction

parallel to the tract. This is what we require; FA changes very

quickly as one moves perpendicular to the local fibre bundle, so

even the smallest misalignments in this direction have great effect

on the final FA statistics. Parallel to the tract, FA changes relatively
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slowly, such that the alignment provided by the initial nonlinear

registration is sufficient to align ‘‘like with like’’ across subjects.

There are two limits placed on this perpendicular search within

a given subject’s FA image. The first is that we constrain the search

to remain closer to the starting section of skeleton than to any other

section of skeleton; where two separate sections of the skeleton lie

close to each other, the space in between is divided into two, and

each skeleton section can only search voxels within its part of that

space. This is achieved by creating a skeleton distance map—all

voxels in the image are filled with a value encoding the distance to

the nearest skeleton point. The above rule is then enforced by only

searching outwards from a given skeleton point while this distance

measure is increasing. Thus any given voxel can only be mapped

into a single section of skeleton. Fig. 4 shows an example

‘‘distance map’’. The red–yellow overlay encodes, for each brain

voxel, how far the nearest skeleton voxel is.

Secondly, there is a further constraint placed on the maximum

search distance via a soft distance limit. A wide Gaussian function

(FWHM 20 mm) is applied as a multiplicative weighting to FA

values when carrying out the search for maximum FA (note—this is

a weighting function in the search, not a smoothing). This

deweights the most distant voxels in a smooth, controlled manner.

Once the optimal voxel has been found, its FA value (not weighted

by the distance function) is placed into the current skeleton voxel.

There is one major tract in the brain where the local skeleton

topology is tubular rather than sheet-like—in the inferior part of the

cingulum. The superior part of the cingulum (i.e., above the corpus

callosum) is slightly extended across its cross-section in the

inferior-superior direction, and well-localised across subjects by

virtue of the strong, nearby corpus callosum, and hence the normal

projections described above work well (similar issues relate to the

fornix). In contradistinction, the inferior (retro-/infrasplenial) part

of the cingulum is more tubular than sheet-like, and its position in

any given axial slice varies across subject in both the anterior-

posterior and left-right directions. Because of this, there is no well-

defined search direction for the FA projection onto the skeleton, so

we use a different approach here. The inferior cingulum is

automatically defined via a liberal standard-space mask, and for

skeleton points within this mask, the local search for maximum FA

is within a circular space in the appropriate axial slice, rather than

along a single ‘‘perpendicular’’ direction.
Fig. 4. Example ‘‘distance map’’: the red–yellow overlay encodes, for each

brain voxel, how far the nearest skeleton voxel is. This is used during the

projection of individual FA maps onto the skeleton in order to ensure that

values are only taken onto the nearest part of the skeleton. The underlying

mean FA skeleton can be seen where distance is zero.
We have therefore, for each subject, filled the skeleton with FA

values from the centres of the nearest relevant tracts. Note that the

idea of taking a ‘‘pure’’ FA value from the centre of a tract in a way

that claims to be unaffected by partial volume effects is only

strictly true for tracts wider than the relevant voxel dimension.

When this is not the case, i.e., for the thinnest tracts, the ‘‘centre’’

peak FA value will reflect both the tract width and the true peak FA

value, due to partial voluming.

Statistics and thresholding

At this point, we now have the data ready to feed into

voxelwise cross-subject statistical analysis. Each subject’s FA

image has been prealigned to a common space using constrained

nonlinear registration, a common tract skeleton has been formed,

and each subject’s FA image has then been fully aligned (via

perpendicular search for local tract centre) with the common

skeleton. Thus, the data are now in the form of a sparse

(skeletonised) 4D image, with the fourth dimension being subject

ID. We can now carry out voxelwise statistics across subjects, for

each point on the common skeleton.

The simplest approach is to use univariate linear modelling, i.e.,

process each skeleton voxel independently, applying the general

linear model (GLM, i.e., multiple regression) across subjects. For

example, one can easily use a two-regressor analysis (equivalent to

an unpaired t test) to test for significant local FA differences

between a group of patients and a group of controls.

For simple parametric regression and inference to be valid, the

cross-subject null distribution of FA values (for any given voxel)

needs to be Gaussian. If we have succeeded, for any given skeleton

voxel, in taking FA values from the centre of the same point of the

same tract in all subjects, one would indeed expect Gaussian

variability, except possibly for very high or very low mean FA

values. In the Results section, we show some results of testing data

Gaussianity; it is found that the TBSS-produced data are indeed

Gaussian.

The remaining complication in carrying out inference is the

issue of multiple-comparison correction. One would not want to

apply Bonferroni correction, as the data will contain some intrinsic

spatial smoothness (typically the final skeletonised FA data have

intrinsic smoothness of order 4 mm FWHM), and this would

therefore be an over-conservative correction. Because of the highly

nonlinear steps leading to the formation of the skeletonised data,

the lack of connectivity at many junctions, and the topological

skeleton complexity, one also cannot assume the validity here of

standard Gaussian random field theory (GRF, Worsley et al., 1992),

unlike with standard VBM-style approaches; however, it may well

be that approaches such as the application of GRF to 2D meshes

containing MEG-derived data (Pantazis et al., 2005), or other

probability validation work (PVW), could help here.

Alternatively, one could use a permutation-based approach

(Nichols and Holmes, 2001), testing an appropriate test statistic

(e.g., voxel t value, cluster size4 or cluster mass) against the null

distribution (generated via multiple random permutations of
4 Note that for cluster-based inference, one needs to choose an initia

cluster-forming threshold; the choice of this initial threshold is totally

arbitrary, which is a limitation of current cluster-based approaches in

general. However, note that the final (‘‘corrected’’) P value associated with

a cluster through permutation testing is totally valid, regardless of wha

cluster-forming threshold is used.
l

t
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Fig. 5. Diffusion data acquisition protocols. The J-X gradient direction schemes create multiple directions equally spaced over a sphere, according to Jones et

al. (1999).
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subject ID ordering with respect to the model) of maximum (across

space) values of the test statistic. This gives strong control of

‘‘familywise errors’’ while searching over the entire skeleton for

regions of significant effect. This approach does not require the

cross-subject distribution of FA values to be Gaussian.

Note that a general advantage of the skeleton-based approach is

the reduction in the number of tests; fewer tests mean a less severe

multiple comparisons problem.
Results

In the following sections, we present example results and

quantitations from different stages of the TBSS analysis, followed

by example results from several diffusion imaging studies. The

data generally used to illustrate TBSS are taken from a study of

amyotrophic lateral sclerosis (ALS, a progressive neurodegenera-

tive disease most prominently affecting the motor system). The

diffusion acquisition parameters for this and all other data used in

this paper are given in Fig. 5.

Nonlinear alignment

In Fig. 6, we show example registrations of 3 controls and 3

ALS patients, with ROIs showing the corpus callosum. In each, the

images on the left show affine-only registration, and on the right

the full nonlinear registration results. In these examples, it is clear

that affine-only registration is insufficient to give good alignment.

The overlaid red edges are intensity edges from the target image.

Further examples can be seen later in Fig. 11; the nonlinear

registration is generally working well, but on close inspection, it is

clear that ‘‘perfect’’ alignment has not been achieved, showing the
Fig. 6. Example registrations of 3 ALS patients (A, C) and 3 controls (B, D), ROI t

only registration. (C, D) Affine + nonlinear registration. The overlaid red edges a
insufficiency of pure nonlinear registration before applying

voxelwise statistics.

Identifying the target for alignment

Fig. 7 shows example results of summary nonlinear displace-

ment scores. The subjects are 20 controls and 13 ALS patients,

respectively. For each target subject, a column of scores is shown;

each score represents the root mean square displacement (across all

brain voxels) for the nonlinear component of the alignment of any

given subject to the target subject.

The diagonal is full of zeros as each subject does not need to

deform to match itself. More interestingly, the matrix is fairly close

to being symmetric (about the diagonal). This reflects the fact that

in general, registering subject A to subject B involves a similar

amount of deformation than registering B to A, as one would hope.

In the bottom row, each target subject’s overall score is found

by taking the mean of the scores from registering each other

subject to the one in question. Note the relatively high variation in

these mean scores, reflecting the fact that some subjects are

significantly more ‘‘typical’’ to the group of subjects in question

than others. Note also the greater variability within the patient

group than within the control group. The means of the two groups,

however, are not significantly different.

Creating the FA skeleton

Fig. 8 shows several orthogonal slices illustrating the mean FA

image (red–yellow) and the mean FA skeleton (blue) derived from

the controls + ALS dataset. Note that despite the transformation

from FA target space to MNI152 being just affine, the alignment

here (with the MNI152) is excellent, as one would hope if the
hrough the anterior part of the corpus callosum, in axial view. (A, B) Affine-

re intensity edges from the target image.
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Fig. 7. Example results of summary nonlinear displacement scores (mea-

sured in voxels). Each column corresponds to a particular target subject; each

row within the column summarises the amount of nonlinear deformation

when aligning one of the study’s 33 subjects to that target. The bottom row

summarises the target subjects; the first 20 subjects are the controls, and the

final 13 are ALS patients, with clearly greater structural variability than the

control group.

Fig. 8. Example overlay of mean FA map from 20 controls and 13 ALS patients, af

space. The mean FA, shown in red–yellow, is thresholded at 0.2 and overlaid on
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‘‘most typical’’ subject is generally representative of the wider

population.

In Fig. 9, we show the different skeletons created when

different subjects are chosen as the target, in order to show the

relative stability of the final skeleton against the choice of target

subject. The subjects are 20 controls and 13 patients with ALS. In

the first analysis, we used all 33 subjects in the alignment target

identification; one of the ALS patients was determined to be the

most ‘‘typical’’ (subject number 27 in Fig. 7). Next, we used just

the 20 controls to find the target subject (number 5) and finally just

the 13 ALS patients to find a target subject (number 23). Then, for

each of the 3 choices of target subject, we aligned all 33 subjects to

the target, formed the mean FA and created the FA skeleton. Fig. 9

shows the 3 skeletons thus formed, shown together and separately,

for an example axial and an example coronal slice. All 3 skeletons

are thresholded at a mean FA value of 0.3. It is clear that the 3

skeletons are very similar, suggesting that the final skeleton is not

sensitive to the set of subjects used in the target space identification

or the exact target then selected.

In order to give an idea of the relative number of original and

skeletonised white matter voxels, and the effect of thresholding the

mean FA skeleton, Fig. 10 shows the skeleton derived from a study

comprising 36 controls and 33 schizophrenics, overlaid onto a

tissue-type segmentation derived directly from the MNI152

segmentation priors used by SPM and FSL. Green shows voxels

with mean FA value in the range 0:0.2; red shows 0.2:0.3, and blue
ter each subject has been nonlinearly aligned to the target subject in MNI152

to the MNI152. The skeleton, shown in blue, is thresholded at 0.3.
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Fig. 9. FA skeletons created using 3 different target subjects for nonlinear registration. (A) All 3 skeletons overlaid. (B) target subject from all 33 subjects. (C)

Target subject from just the 20 controls. (D) Target subject from just the 13 ALS patients. All colour maps show FA values from 0.3:1.
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shows voxels with FA greater than 0.3 (in the actual schizophrenia

results shown later, we used a threshold of 0.2). The number of white

matter voxels (which equals the volume in mm3 at this resolution) in

the MNI152 segmentation is 455,154. The total number of skeleton

voxels is 289,562; however, the number within the MNI152 white

matter mask is 77,374, a sixfold reduction compared with the

number in the mask. This reduction reflects the aim of reducing the

FA data to being most robustly and informatively represented by just

the centres of white matter tracts (though see also the comments in

the final discussion relating to the option of also using other

measures such as integrated FA or tract width as statistics of interest).

With respect to the effect of thresholding, the number of skeleton

voxels with FA less than 0.2 is 148,218, of which 146,151 (99%) lie

outside theMNI152white matter mask. Furthermore, of the skeleton

voxels inside the MNI152 white matter mask, over 97% have a FA

greater than 0.2. These figures show clearly that the general effect of

thresholding (at, e.g., 0.2) is to distinguish between areas that are on

average grey matter and those that are on average white matter.

Fig. 11 shows the variation in aligned FA images relative to

the mean FA skeleton, from a second dataset—15 subjects who
Fig. 10. Mean FA skeleton from 36 controls and 33 schizophrenics,

thresholded into three ranges: green = 0:0.2, red = 0.2:0.3, blue = 0.3:1.

Underneath is the tissue-type segmentation (into grey,white andCSF) derived

from the population-average segmentation priors used by SPM and FSL.
stutter and 11 controls. It can clearly be seen that the skeleton

lies within or near WM tracts in the great majority of subjects.

Projecting individual subjects’ FA onto the skeleton

Fig. 12 shows the search results in part of an axial slice taken

from analysis of 18 normal subjects. For each subject a set of arrows

from the skeleton to that subject’s (aligned) FA image is shown. It

can be seen that where there is slight misalignment of a subject’s

warped FA image with the skeleton (derived from the mean FA

image), the search strategy appears to be correctly taking values

from the true centre of the nearest tract. (Note that the search is in 3D

so these 2D cross-sectional cuts through the image, and the search

vectors do not quite show the whole story.)

In order to show qualitatively an example relationship between

tractography output and a mean FA skeleton, we took the

reproducibility data (see later) and derived several tracts for a single

subject (note: not the same subject as that used as the nonlinear

registration target). The tractography was run using FDT (Behrens et

al., 2003b; Smith et al., 2004); two masks were defined such that

(tract-following) samples were seeded from each mask and accepted

only if they passed through the other. After passing through the

second mask, the tract following was terminated for clarity of

display. Masks were placed by hand in the left and right upper

cingulum, optic radiation, cortico-spinal tract and in the genu of the

corpus callosum. Fig. 13 shows the 8-subject group mean FA

skeleton underneath the tractography output from one of the

subjects. On the basis of these images, one would be fairly confident

that a perpendicular search from the skeleton voxels will intersect the

correct tract appropriately, and it is also clear that the search is

necessary to correct the slight misalignment between the tract centre

and the skeleton, in several places.

Testing for Gaussianity

As discussed above, it is of interest to test whether projecting

data onto the mean FA skeleton improves the Gaussianity of the

cross-subject distribution of FA values. In Jones et al. (2005), it

was shown that there was a large number of voxels whose cross-
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Fig. 11. Individual subject (nonlinearly aligned) FA maps vs. mean FA skeleton in 26 subjects (15 stutterers and 11 controls). Left: coronal ROI; right: axial ROI.

S.M. Smith et al. / NeuroImage xx (2006) xxx–xxx12
subject distribution was significantly non-Gaussian. We tested two

datasets—one comprising 36 controls and the other comprising 33

schizophrenics, using the Lilliefors modification of the Kolmo-

gorov–Smirnov test (Lilliefors, 1967) to find voxels where the
cross-subject distribution was significantly non-Gaussian. The test

threshold was set at 0.05. Therefore, we expect to find 5% of

voxels failing the test by chance; a much higher number of voxels

is evidence for non-Gaussianity.
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Fig. 12. Axial regions-of-interest showing, for each subject in a group of 18 controls, how each skeleton voxel takes data from the relevant local FA voxel.
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We ran the test on each dataset in three ways. Firstly, we tested

all voxels after the initial nonlinear registration (and before

skeletonisation); this is similar therefore to the VBM-based

investigation reported in Jones et al. (2005). Secondly, we masked

this aligned data with the mean FA skeleton, and investigated just

these voxels—i.e., looking at skeleton voxels, but before projecting

the aligned data onto the skeleton. Finally, we tested the

skeletonised data after full TBSS preprocessing, i.e., after projection

onto the skeleton.
The percentage of voxels found to be non-Gaussian in the

controls dataset were (respectively for the three tests): 17.8, 7.0,

6.6. In the schizophrenics dataset, the percentages were 19.2, 8.1,

7.5. Thus, it is clear that with the ‘‘VBM-style’’ analysis, we find a

large number of voxels with a non-Gaussian distribution (nearly 4

times more than predicted by chance, in exact agreement with the

figure found in Jones et al. (2005) for unsmoothed VBM-

preprocessed data). Interestingly, the spatial distribution of these

tends to be away from the tract centres, as judged visually, and as
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Fig. 13. Example output of probabilistic tractography for several major

tracts from a single subject, overlaid on top of the mean FA skeleton

derived from 8 normals; the subject used for tractography was not the one

used as the reference in the nonlinear registration. In brown is shown the

MNI152 average T1 image.
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shown by the great reduction in the percentages in the second tests,

where the aligned data is only tested at the skeleton voxels. For the

fully TBSS-processed data, the test failure rate is reduced still

further, to rates not far above the 5% expected by chance.

Repeatability tests

Next, we investigated the repeatability of FAvalues, both across

sessions and across subjects. We analysed data from 8 healthy

subjects, each scanned on 3 separate occasions. We estimated %

coefficient of variation (CoV: 100 � standard deviation/mean)

across sessions or subjects as the measure of repeatability.

We first measured CoV at 7 voxels placed in the centre of

various white matter tracts on the mean FA image; the genu of the

corpus callosum, left and right optic radiation, left and right

pyramidal tract in the cerebral peduncle, and left and right

superior cingulum bundle. The exact positioning of the points is

described in Heiervang et al. (2006). As well as estimating CoV

for the TBSS-preprocessed data at these points, we also found

CoV for data before the skeletonisation, after the nonlinear

registration stage, which we therefore refer to as being ‘‘VBM

preprocessed’’ (though note that no spatial smoothing was

applied). Thirdly, we estimated CoV by carefully choosing the

relevant voxels of interest by hand on each original FA image
Fig. 14. Inter-session and inter-subject variability results. 8 subjects were scanned 3

shown at 7 white matter positions of interest and also using summary statistics fo
separately. Ideally, this hand placing has the advantage of adapting

to tract localisation changes across subjects but potentially suffers

from subjectivity/user error. In the easiest to define, thickest tracts,

hand definition of the voxel in this way should give a close to

optimal CoV.

We also obtained global summary statistics (median and mode)

across the whole brain for CoV in the TBSS and VBM-

preprocessed cases. VBM-preprocessed results are only reported

for voxels where the mean FA across all subjects, and all sessions

is greater than 0.2, to avoid bias through inclusion of potentially

high CoV values in low mean FA voxels. Likewise, the TBSS

skeleton was thresholded at the default of 0.2.

Fig. 14 shows the inter-session and inter-subject variability

results. Cross-session variability with TBSS preprocessing is

generally slightly lower than VBM preprocessing and generally

considerably lower than with hand placing. Cross-subject variability

with TBSS preprocessing is consistently lower than with VBM

preprocessing and lower than hand placing in 4 out of seven

positions of interest. The results suggest that TBSS is successful in

aligning equivalent structures across sessions/subjects, and that it

improves alignment further than pure nonlinear registration has

achieved here. With TBSS the inter-session CoV is generally

between 3% and 5% (mode 3%), and the inter-subject CoV is

generally between 5% and 15% (mode 12%). These figures should

prove useful when carrying out power calculations for planned DTI

studies.

Example application—schizophrenia

We analysed data from 33 schizophrenics and 36 age-matched

controls. After applying the TBSS preprocessing, we first carried

out a region-of-interest analysis on mean FA skeleton voxels in the

superior cingulum bundle. This was in order to compare our results

with those given in Kubicki et al. (2003), where left > right and

control > schizophrenic FA differences were reported in the

cingulum bundle. Our results were in agreement, namely control >

patient (P = 5.8e–3) and left > right (P = 8.4e–6).

We then carried out voxelwise statistics using the TBSS-

preprocessed data, applying a control-patient unpaired t test.

Inference was carried out using cluster-size thresholding, with

clusters initially defined by t > 3. The null distribution of the

cluster-size statistic was built up over 5000 permutations of group

membership, with the maximum size (across space) recorded at

each permutation. The 95th percentile of this distribution (a cluster

size of approximately 150 voxels on the skeleton) was then used
times each. Percentage coefficient of variation (CoV) variability results are

r the whole brain. Optimal results for each test are shown in bold.
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Fig. 15. Coronal views through the controls > schizophrenics group comparison. (A) TBSS analysis showing the FA skeleton in blue and significant group

difference in red, in the corpus callosum and fornix. (B) VBM-style analysis, with no spatial smoothing; as well as the corpus callosum and fornix, a group

difference is suggested running along the underside of the ventricles. (The 5-mm and 10-mm FWHM smoothing analyses showed the same general pattern,

though more diffuse.) (C, D) The mean FA images for the controls and schizophrenics, respectively. It is clear that while the corpus callosum is well aligned

between the two groups, the lower edge of the ventricles is not, due to larger ventricles in the patient group. This has given rise to a spurious result in the VBM-

style analyses.
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as the cluster-size threshold, i.e., the clusters were thresholded at a

level of P < 0.05, which is fully corrected for multiple

comparisons across space (i.e., controlling the familywise

error—the chance of one or more false positives anywhere on

the skeleton).

As well as running TBSS, we also carried out standard VBM-

style analysis, using the same nonlinear registration stage. We

smoothed the aligned data at a range of spatial extents (0-, 5-, and

10-mm FWHM), carried out the same voxelwise t test as done for

the TBSS-preprocessed data, and used the same cluster-size

thresholding as described above. The VBM-style analysis was

only performed at voxels where the mean FA across subjects (after

nonlinear alignment) was greater than 0.15. We considered that any

mean FA lower than this is dangerous to consider for a group

difference, as such a voxel must be considered to be potentially

dominated by grey matter or CSF partial voluming, and any group

difference cannot be unambiguously ascribed to change in white

matter FA as opposed to a change in relative local amounts of

different tissue types.

TBSS found reduced FA in patients in right-superior, medial

and anterior corpus callosum, superior and right-inferior fornix and

in long association fibres near the junction of the right superior and

inferior longitudinal fasciculi. In the majority of these areas, the

VBM-style analysis also found a group difference at all 3 spatial

smoothing extents, though with much less precision about the

exact localisation of group difference. However, in addition,

several spurious results were generated by the VBM-style analyses,

for example, just below the ventricles, as seen in coronal view in

Fig. 15. It is clear from inspecting the mean FA images for the

controls and schizophrenics that while the corpus callosum is well
Fig. 16. TBSS results from 13 ALS patients and 20 controls. Red shows where FA c

stereo pair of the mean FA skeleton; to view, cover other parts of the figure, hold app

fused image. (B, C) Green shows mean FA skeleton, mostly hidden underneath blue

is significantly lower in ALS than in controls, after regressing out the effect of age
aligned between the two groups, the lower edge of the ventricles is

not, due to larger ventricles in the patient group. This has given rise

to a result which could easily be misinterpreted as a group

difference in FA in the VBM-style analyses. TBSS did not show

any spurious effect, as it was not sensitive to the between-group

shift in this area. For the significant TBSS result in the fornix, we

confirmed, through looking at the skeleton projection vectors, that

this result was not spurious, i.e., that any inter-subject movement in

the fornix was correctly dealt with via the final projection of FA

maximum onto the skeleton.

Example application—ALS

We analysed data from 13 ALS patients and 20 controls.

After applying the TBSS preprocessing, we carried out two

GLM analyses. In the first, using only the patients, we

correlated FA with each patient’s ALS progression rate, using

permutation-based inference on cluster size (t > 2, P < 0.05

corrected). In the second analysis, we tested where FA was

significantly reduced in ALS compared with controls, after

regressing out the effect of age (as the two groups were not

perfectly age-matched), using permutation-based inference on

cluster size (t > 1, P < 0.05 corrected).

Fig. 16 shows in blue where FA is reduced in ALS compared

with controls—the majority of the mean FA skeleton shows

reduction, including most of the corpus callosum and pyramidal/

corticospinal tracts. Red shows where FA is negatively

correlated with ALS progression rate; this is confined to the

pyramidal/corticospinal tract, clearly seen in coronal and axial

view.
orrelates negatively with ALS progression rate in the ALS patients. (A) A 3D

roximately 20 cm from the eyes, cross the eyes and slowly focus on the centre

and red. Blue (also mostly present ‘‘underneath’’ red voxels) shows where FA

. The background image in panels B, C is the MNI152.
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Example application—multiple sclerosis

We analysed data from 15 patients with multiple sclerosis (MS).

After applying the TBSS preprocessing, we carried out two GLM
ig. 17. TBSS results from 15 MS patients. (A, B) 3D surface renderings of the mean FA skeleton. Blue shows the group mean lesion probability distribution,

resholded at 20%. Red shows voxels where FA correlates negatively (across subjects) with subject total lesion volume. Panel B is a 3D stereo pair. (C) Yellow

hows where FA correlates negatively with EDSS disability score. (D) Red as above (negative correlation with lesion volume). In panels C and D, green shows the
F

th

s

mean FA skeleton, blue shows the group mean lesion distribution, and the backgro
analyses. In the first, we correlated FA (voxelwise, across subjects)

with each subject’s EDSS score (Expanded Disability Status Scale,

a common measure of disability), using permutation-based

inference on cluster size (t > 1, P < 0.05 corrected). In the second
und image is the MNI152.
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analysis, we correlated FA across subjects with total lesion volume

(measured by hand segmentation of T2-weighted images), again

with permutation-based inference on cluster size (t > 2, P < 0.05

corrected).

Fig. 17 shows the mean lesion probability distribution in blue:

For each subject, a binary lesion mask is created by hand. All

subjects’ lesion masks are then transformed into standard space and

averaged. The figure shows this mean lesion distribution thresh-

olded at 20% (i.e., at any given blue voxel, 20% of the subjects had

a lesion present).

Red voxels on the mean FA skeleton show where FA correlates

negatively across subjects with subject total lesion volume. There

is strong negative correlation in left superior cingulum and many

parts of the corpus callosum, including midline parts of the CC,

well away from areas of lesion. This suggests that FA is reduced

even in normal appearing white matter as disease progresses.

Yellow voxels show where FA correlates negatively with EDSS

disability. Affected areas include superior cingulum, corpus

callosum, pyramidal/corticospinal tract, and inferior fronto-occi-

pital/longitudinal fasciculus.
Discussion

In this final section, we discuss some of the limitations of our

approach, as well as presenting some potentially interesting areas for

future research.

Limitations and dangers

A serious limitation of VBM-style approaches is the need for

spatial smoothing, and the problem of arbitrarily choosing the spatial

smoothing extent. Another smoothing-related problem lies in the

interpretation of cross-subject differences in FA when the white

matter is mixed with significant amounts of grey matter—in this

case, any estimated change in FA is more likely to be due to a change

in the relative amounts of different tissue types than to a change of

FA in white matter. See the two foci of detected change in Jones et al.

(2005) for an example of this; at least one of these appears to be

localised well away from a predominantly white matter area. This

problem is greatly exacerbated when applying spatial smoothing, as

this increases the mixing of tissue types in any given voxel.

However, as one moves away from the larger tracts, this effect will

still occur within a voxel even when no smoothing is applied—for

example, when tract width is smaller than original voxel size. In this

case, it is very difficult to determine whether a reduction in FA is

really due to within-tract FA change or a change in tract thickness,

and it is important to note that in such cases our approach does not

resolve this problem. It is partly for that reason that the mean FA

skeleton is thresholded, typically at 0.2, rather than being allowed to

fall all the way to zero.

A similar issue is the possible confound of effects such as

within-scan head motion. The most obvious effects of increased

head motion are increased image blurring and biased FA. This

could lead to misinterpretation of apparent subject group dif-

ferences, if for example a patient group had greater head motion

than a control group. Such problems will not in general be resolved

through the use of the TBSS approach. One could potentially

estimate head motion using image entropy measures and/or motion

estimates from the eddy-current/head motion preprocessing and

feed this into final statistical analyses as a confound regressor,
though this would not be guaranteed to remove all related

problems, and could remove the effect of interest.

Another area where careful interpretation is needed is in regions

of crossing tracts or tract junctions. As discussed earlier, voxelwise

statistics are still difficult to estimate and interpret at tract junctions

or crossings. We do not at this point enforce skeleton contiguity at

junctions, for practical reasons—a more sophisticated data projec-

tion approach would be needed here. In any case, the interpretation

of a change in FA at junctions (or areas of crossing tracts) can be

complicated; for example, an apparent reduction in FA at junctions

can in fact be due to an increase in one of the tracts feeding into the

junction, if it is a ‘‘weaker’’ tract than others feeding into the

junction; see also Jones et al. (2005) and Tuch et al. (2005).

Finally, there is the possibility that pathology could reduce FA so

strongly that potential areas of interest may be wrongly excluded

from analysis (due for example to the thresholding of the mean FA

values on the skeleton). This is in general unlikely, as the effect of

most pathologies which are appropriate for cross-subject voxelwise

analysis are too subtle (in effect on FA) for this to occur; those

pathologies (e.g., gross stroke or large tumours) which would be

likely to seriously disrupt tracts (and FA) are unlikely to be suitable

for this kind of voxelwise analysis. However, if there was indeed the

possibility of the danger of a strong reduction in FA without very

large topographical/topological disruption, an appropriate approach

would be to use a target FA image for registration, and mean FA

skeleton, derived from a relevant control group (ideally a different

control group than is part of the study). The final step projecting FA

data onto the skeleton would still be expected to be successful in

removing residual alignment differences between the different

subject categories involved.

Future directions

One obvious area for potential improvement is to use all

available diffusion tensor information (rather than just FA), both to

drive the preprocessing stages (e.g., alignment), and to feed into

the final statistics. For example, Park et al. (2003) show the value

in driving nonlinear registration from the full tensor information,

and doing this may be worthwhile here, although given the

reported improvement in accuracy, the benefits may be modest. It

may also be of value to include other imaging (such as T1-

weighted structural images) to help drive the alignment. In one

study which we analysed with TBSS, the DTI data were of

sufficiently bad quality (primarily with respect to signal-to-noise

ratio) that we used T1-weighted images instead of FA to drive the

nonlinear registration, which did indeed qualitatively improve

registration robustness. One could also consider using a white

matter segmentation (again output from structural imaging) for the

registration, which we would expect to give similar results to using

the FA; in this case, we would expect the segmentation-derived

images to be lower noise and higher resolution than FA, but

possibly containing less rich contrast information.

Furthermore, it would be a natural extension of this work to

carry other diffusion measures (mean diffusivity, tensor eigenval-

ues, principal tract direction, etc.) through the alignment and

skeleton projection process and carry out voxelwise statistics on

these as well as the FA values (see, for example, Schwartzman et

al., 2005). Also, one does not necessarily need to take the

maximum FA value when projecting local tract information onto

the skeleton; for example, some integration measure of FA within

the search space could give an interesting measure of local tract
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thickness, though interpretation would need to be made carefully

in the light of the previous discussions on partial voluming. Such

developments could clearly give a richer set of measures with

which to find localised connectivity-related changes across

subjects.

It would also be useful and fairly straightforward to define a

standard-space skeleton; we have shown in this paper that the

‘‘most typical’’ subject in any given study generally conforms very

well to standard space even after purely affine alignment to the

MNI152 average image. Hence, a standard-space mean FA image

and derived skeleton could simplify TBSS analyses, if one was not

concerned about inter-group biases resulting from such a prede-

fined space. A natural extension of this would be to presegment a

standard space skeleton into labelled tracts, thus providing the

ability to output simple, fully automated reporting of FA statistics

within all major tracts as part of the TBSS output.

Finally, there is no reason why one has to carry out the cross-

subject statistics separately for each voxel. As with fMRI time

series analysis, one could perfectly well feed the entire (sparse) 4D

dataset into a multivariate approach such as ICA (independent

component analysis (Beckmann and Smith, 2004)), and not only

generate added benefit from modelling the spatial aspects of the

signal, but potentially find cross-subject modes of variation not

predicted in advance.

In this paper, we have presented a new method for estimating

localised change in fractional anisotropy, a useful marker for brain

connectivity across different subjects. The method attempts to

combine the strengths of voxel-based analyses (being able to

analyse the whole brain without predefining voxels or tracts of

interest) with the strengths of tractography-based analyses (ideally,

being confident that the estimates of FA are truly taken from the

relevant voxels). We have shown that by projecting FA values onto

a subject-mean FA tract skeleton, cross-subject FA becomes more

Gaussian and of lower variability; hence analyses become more

robust and more sensitive. We have shown example results from

applying tract-based spatial statistics to several example datasets.

TBSS is freely available as part of FSL (FMRIB Software

Library—www.fmrib.ox.ac.uk/fsl).
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