
Chapter 2

Partial k-Space Reconstruction

2.1 Motivation for Partial k-
Space Reconstruction

In theory, most MRI images depict the spin den-
sity as a function of position, and hence should be
real valued. If this were true, then by the sym-
metry of the Fourier transform, only half of the
spatial-frequency data will need to be collected.
Since real functions have conjugate symmetry in
spatial frequency space, the uncollected data could
be synthesized by reflecting conjugate data across
the origin. Unfortunately, there are many sources
of phase errors that cause the real-valued assump-
tion to be violated. These include variations in
the resonance frequency, flow, and motion. As a
result, partial k-space reconstructions always re-
quire some type of phase correction, to correct for
these sources of incidental phase variation. This
allows real images to be reconstructed.

An example of a gradient-recalled axial head im-
age shown in Fig. 2.1 illustrates the problem. The
magnitude reconstruction of a full k-space acqui-
sition is shown in Fig. 2.1a and, the phase in
Fig. 2.1b. The linear component of the phase has
been corrected, leaving only the non-linear compo-
nents. The absolute values of the real and imag-
inary components are shown in Fig. 2.1c and d.
Clearly, a significant amount of phase correction is
required before the conjugate phase symmetry can
be exploited.

a) Magnitude b) Phase

c) abs(Real) d) abs(Imag)

Figure 2.1: Axial gradient echo image acquired at
0.5T with an echo time of 13.8 ms. At this time wa-
ter and fat are rephased. The linear shim terms have
been corrected, leaving the non-linear components due
to susceptabilty shifts.

The reason for this phase is that the precession
frequency varies across the head. The image phase
is approximately

φ(x, y) = ω(x, y)TE (2.1)

where ω(x, y) is the local resonant frequency in
rad/s, and TE is the echo time. This can be due to
inhomogeneity of the main magnet. These changes
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Figure 2.2: Partial k-space acquisition for reducing
scan time by reducing the number of phase encodes
required.

in frequency vary slowly with spatial position, and
can in theory be calibrated out of the system with
proper shimming. More fundamental, and more
problematic, is the variation in frequency due to
the magnetic susceptibility difference between tis-
sue and air. At air-tissue interfaces it is common
to see local frequency shifts of several parts-per-
million (ppm). These are seen in these images in
the brain tissue adjacent to the ears, which is di-
rectly above the auditory canal, and around the
nasal passages. An additional problem is that
these shifts can occur over relatively short dis-
tances, and this governs the amount of resolution
required for phase compensation, the amount of
coverage in k-space that will be required, and ulti-
mately how “partial” a partial k-space acquisition
can be.

2.1.1 2DFT Applications

There are two general applications of 2DFT imag-
ing where it is desirable to collect only a fraction
of the full k-space data. The first is for reducing
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Figure 2.3: Pulse sequence with a reduced echo time,
resulting in a partial echo readout.

scan time by reducing the number of acquisitions
that are required to construct an image of a given
resolution. This is illustrated in Fig. 2.2. Slightly
more than half of the complete k-space data is col-
lected, allowing the scan time to be reduced by
almost a factor of two.

The second application is for reducing echo times.
Here the area of the readout dephasor gradient
is reduced so that the echo comes earlier in the
readout window as is shown in Fig. 2.3. This can
be important for reducing flow dependent dephas-
ing, and through plane susceptibility-induced sig-
nal loss. This case is illustrated in Fig. 2.4.

2.1.2 Applications to Other k-Space
Acquisition Methods

Partial k-space acquisitions are also of interest for
most other k-space acquisition methods. For EPI
a partial k-space acquisition reduces the echo time,
which can be quite long for a fully symmetric ac-
quisition. Reconstruction of this type of partial
k-space EPI data is very similar to the reduced
phase-encode 2DFT case.

Other trajectories are more interesting. Projec-
tion acquisitions can exploit partial k-space sym-
metries, as can spiral acquisitions. The proper way
to reconstruct these data sets is still an open re-
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Figure 2.4: Partial k-space acquisition for reducing
echo times by collecting only a fraction of the full echo.

search question. We will briefly describe the issues
and possible solutions below.

2.1.3 Approaches to 2DFT Partial k-
Space Reconstruction

We are going to consider two different types of ap-
proaches to partial k-space reconstruction. First
are direct methods. These operate by constructing
a real image in a single pass. One example is the
homodyne algorithm [1]. These methods have lim-
itations due to the interaction of phase compensa-
tion and synthesis of the conjugate data. The sec-
ond type of approach addresses these limitations
by using an iterative algorithm. One example of
an iterative algorithm is called POCS for “projec-
tion onto convex sets” [2-4]. This operates by it-
eratively synthesizing the missing data that would
be consistent with the data that was collected. We
start with the direct algorithms, describe their lim-
itations, and then move on to iterative algorithms.

2.2 Direct Partial k-Space Re-
construction

2.2.1 Trivial Reconstruction by Zero
Padding

The simplest way to reconstruct a partial k-space
data set is to simply fill the uncollected data
(phase-encodes or readout samples) with zeroes.
Then, perform the 2DFT and display the magni-
tude. This works acceptably if the collected k-
space fraction is close to 1, and works poorly as
this fraction approaches 0.5. This is illustrated
in Fig. 2.5 for a k-space fraction of 9/16ths. The
reconstruction of the full k-space data is shown in
(a), and the reconstruction of the zero-padded par-
tial k-space data in (b). The result is significant
blurring in the phase-encode direction. Clearly
this is unacceptable, and this motivates the search
for other solutions.

The reason for the blurring can be identified by
considering the data set to be the product of a
full k-space data set multiplied by a weighting
function. In this case an offset step function,
where the offset corresponds to the k-space frac-
tion. This will be denoted W (ky), and is illustrated
in Fig. 2.6. The inverse Fourier transform of this
function is the impulse response that produces the
blurring. If we look at the real component, we see
a sharp impulse at the desired resolution plus a
broader component that corresponds to the width
of the symmetrically acquired data. There is also
a significant undesired imaginary component.

2.2.2 Phase Correction and Conjugate
Synthesis

In order to correct for the blurring from the trivial
reconstruction we need to fill in the missing uncol-
lected data. From Fig. 2.1 it is clear that in gen-
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a)

b)

Figure 2.5: Comparison of a reconstruction of a full
k-space data, and a trivial partial k-space reconstruc-
tion of the same data set where only 144 of 256 phase
encodes have been used, and the remaining 112 have
been replaced by zeros. Note the significant blurring in
the phase-encode (left-right) direction.

eral phase correction must be applied before the
k-space symmetry can be exploited to synthesize
the missing data. In order to do the phase correc-
tion, we will use the narrow strip of data for which
we have symmetric coverage. The phase of this
low resolution image is then used to phase correct
the partial k-space data. After inverse transform-
ing the phase correction, the image reconstructed
from the partial k-space data is transformed back

W(ky)
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real{w(y)}

imag{w(y)}

Figure 2.6: A k-space weighting function W (ky)that
truncates a full k-space data set into a partial k-space
data set. In this case the k-space fraction is 9/16ths,
as in Fig. 2.5. The blurring evident is Fig. 2.5 is due
to the convolution of the inverse transform of W (ky),
which is plotted here in absolute value, and real and
imaginary components.

to the spatial frequency domain, where the data
corresponding to the missing data is synthesized
by conjugate symmetry,

M(kx, ky) = M∗(−kx,−ky). (2.2)

This process is illustrated in Fig. 2.7. The par-
tial k-space data is Mpk(kx, ky), Ms(kx, ky) is the
narrow strip of symmetric data, and mpk(x, y) and
ms(x, y) are the corresponding images produced by
a inverse Fourier transform. The phase correction
function is a unit amplitude image with a phase
that is the conjugate of mx(x, y),

p∗(x, y) = e−i# ms(x,y). (2.3)

The problem with this approach is due to the ef-
fects of the phase compenstation step near the
boundary of the acquired data. The multiplica-
tion by the phase compensation function in the
image domain is a convolution in the frequency
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domain, and the size of this convolution function
can be significant. The fact that the convolution
is operating on zero data for the uncollected phase
encodes produces errors near the boundary. Be-
low we will describe a conjugate synthesis method
based on k-space weighting that reduces this prob-
lem, and present some examples of reconstructed
images.

Before proceeding, it is interesting to consider
what sorts of features we are likely to loose if
we rely on a phase correction function with lim-
ited spatial resolution. Figure 2.8 compares a
full k-space reconstruction mf (x, y), left, with the
real part of the phase corrected full-k-space data
Re{mf (x, y)p∗(x, y)}. The difference image is
shown on the right. This shows which features
will tend to be lost in a partial k-space reconstruc-
tion. One of the main effects is loss of vessel signal.
This is to be expected since the vessels are too
small to be resolved by the phase compensation
function, and because motion through the slice se-
lect and imaging gradients produces velocity de-
pendent phase shifts. The other areas of signal
loss are near the air-tissue boundaries such as the
sinuses.

The difference image has interesting noise charac-
teristics. The backround in the phase corrected
image has lower noise because one component of
the complex noise has been supressed. Where the
image has significant signal, the difference between
the two images is very close to zero. The reason
for this is illustrated in Fig. 2.9, which shows a
vector diagram for the sum of two complex num-
bers, S the signal from some voxel, and n, the
noise component from that voxel. If |S| >> |n|,
only the ni, the component of the noise that is
in-phase with the signal, contributes to |S + n|.
Hence, |S + n| ≈ |S + ni|, and the magnitude op-
eration has suppressed the noise component that
is in quadrature with the signal. A more detailed
description of this effect, as well as a discussion
of the intermediate case where |S| is on the same
order as the magnitude of |n| is given in [1].

Initial partial k-space
data set Mpk(kx,ky)

DFT-1

Symmetric
Data DFT-1

X
p*(x,y)=exp(-i angle{ms(x,y)})

ms(x,y) mpk(x,y)

p*(x,y)mpk(x,y)
Phase Corrected
Partial Image Data

DFT

Phase Corrected
Partial k-space Data

Conjugate Symmetry

DFT-1

m(x,y)

Desired Image

Ms(kx,ky)

Figure 2.7: Summary of the phase correction and con-
jugate synthesis algorithm.
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abs(mf(x,y)) Re{mf(x,y)p*(x,y)} difference*16

Figure 2.9: A full k-space reconstruction (left), and the real part of the phase corrected image. The phase
correction function was computed using ±1/16th of the k-space data (corresponding to a 9/16ths k-space re-
construction). The difference image shows vessels, as well as areas of rapid local change in phase, such as the
air-tissue interfaces in the sinuses.
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Figure 2.8: Magnitude operator suppression of the
noise component that is in quadrature with the signal
vector S. The magnitude of the sum |S +n| is approxi-
mately |S +ni|, where ni is the component of the noise
that is in-phase with S.

2.2.3 Homodyne Reconstruction

The drawback with the previous method is that,
after phase correction in image space, the data
must be transformed back to the frequency do-

main in order to fill in the missing data, and then
an inverse transform back to the image domain is
required to reconstruct the final image. Another
approach, called homodyne, eliminates these last
two transforms. The ways this is done is based on
the symmetry properties of the Fourier transform.

The real part of an image corresponds to the conju-
gate symmetric component of the transform. The
imaginary part corresponds to the conjugate anti-
symmetric component. The weighting function
that truncates the full k-space data set to produce
the partial k-space data set shown in Fig. 2.6 can
be decomposed into symmetric and anti-symmetric
components, as shown in Fig. 2.10.

The imaginary part of the impulse response shown
in Fig. 2.6, due to the antisymmetric component
in spatial frequency space in Fig 2.10, will be sup-
pressed by retaining the real part of the image.
The real part of the impulse response is the in-
verse transform of the symmetric component in
Fig. 2.10, and shows two readily identifiable ele-
ments. One is the desired impulse at the origin.
The other is a much broader sinc, due to the over-
weighting of the low spatial frequencies.
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Figure 2.10: The weighting function that truncates
a full k-space data set to a partial k-space data set
can be decomposed into symmetric and antisymmetric
components, corresponding to the real and imaginary
components of the impulse response, shown in Fig. 2.6.

The key idea in the homodyne algorithm is to
preweight the k-space data so that when we take
the real part of the image data, it corresponds to
a uniform weighting in k-space. The simplest ap-
proach is illustrated in Fig. 2.11. Here the am-
plitude of the high spatial frequencies have been
doubled relative to the symmetrically acquired low
frequency data.

The only problem with this approach is that the
phase correction in image space corresponds to a
convolution in k-space. The weighting of Fig. 2.11
has sharp discontinuities that produce transients
from this convolution, and this can produce im-
age artifacts. As a result, the weighting shown in
Fig. 2.12 is preferred. The central k-space data
is weighted linearly from zero up to 2. Again,
the symmetric component is uniform. The anti-
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2

Figure 2.11: Doubling the high spatial frequencies
relative to the central k-space data results in a uniform
weighting for the symmetric component of the weight-
ing.

symmetric component is also smoother, and this
results in the imaginary component of the im-
pulse response having fewer oscillations, which can
also reduce image artifacts. Other, even smoother
weightings can also be used.

A comparison of homodyne reconstructions of the
gradient recalled echo data from Fig. 2.1 is shown
in Fig. 2.13. On the left is a full k-space recon-
struction. In the middle is a homodyne reconstruc-
tion of 9/16ths of the data using a step weight-
ing. Note the ghost of the scalp interfering with
the brain. Using a ramp weighting, shown on the
right, effectively eliminates this artifact. However,
it produces an additional artifact above the audi-
tory canal, where the phase is changing rapidly as
a function of space.

The homodyne algorithm is summarized in
Fig. 2.14. The central, symmetrically sampled
data is reconstructed as a low resolution image,
ms(x, y). A phase correction image p∗(x, y) is
computed as in Eq. 2.3. The partial k-space
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Figure 2.13: Comparison of the performance of different homodyne k-space weighting functions for a 9/16ths
data set. This is aggressive for phase gradients in this data set. On the left is the full k-space reconstruction. In
the middle a step k-space weighting has been used. Note the distinct ghosts from the subcutaneous fat in the
scalp (arrow). Using a ramp weighting, right, effectively eliminates this artifact. However, an additional artifact
appears above the auditory canal, where the image phase is rapidly changing (arrow).
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Figure 2.12: Using a linear ramp weighting over the
central symmetrically sampled strip in k-space reduces
the transients at the boundaries of the different k-space
regions, and still produces a uniform k-space weighting
for what will be the real component of the image.

data is preweighted in the partial k-space direc-
tion. The weighted partial k-space data is in-
verse Fourier transformed to produce an image
mpk(x, y)∗w(x, y). This is phase corrected by mul-

tiplying by p∗(x, y). The final image is obtained by
taking the real part of the result

mhd(x, y) = Re{p∗(x, y) (mpk(x, y) ∗ w(x, y))}
(2.4)

Note that ideally, the weighting convolution and
the image domain phase correction should occur
in the other order. If the image phase is varying
rapidly in space, phase correction at one pixel can
result in incomplete suppression of the tails of the
imaginary component from a nearby pixel. This
effect is illustrated in Fig. 2.15. The signal from
two voxels separated by five voxels is plotted for
the case where both voxels are on resonance, and
in phase, and for the case where the frequency dif-
ference between the two voxels produces π/2 phase
shift. On resonance the two voxels are resolved as
expected. Off resonance, the tail of the quadra-
ture component of one voxel interferes with the in-
phase component of the other voxel. After phase
correction, this interference remains. Hence, for
the homodyne algorithm to work well, the gradi-
ent of the image phase must be small compared to
the length of the tails of the imaginary component
of the impulse response.
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Figure 2.14: Summary of the homodyne algorithm.

2.2.4 Conjugate Synthesis by k-Space
Weighting

In the phase correction conjugate synthesis algo-
rithm, the unknown data is generated by copying
data from the conjugate symmetric location in k-
space. The boundary between the acquired data
and the synthesized data is a potential source of
artifacts. These can be reduced by using the same
k-space weighting method as in the homodyne al-
gorithm. Examples are shown in Fig. 2.16. In
this case the k-space fraction has been increase to
5/8ths of k-space because the algorithm didn’t pro-
duce acceptable results at 9/16ths.

Voxel a

Voxel b

a+b

On Resonance p/2 Phase shift in 5 voxels

Voxel a

Voxel b

a+b

Phase
Corrected

Figure 2.15: A limitation of the homodyne algorithm.
Two voxels are separated by five voxels. If both are
on resonance, suppressing the imaginary component re-
solves the two voxels as desired, shown on the left. If
the difference frequency between the two produces a
π/2 phase shift, the tails of quadrature component from
one voxel interferes with the in-phase component of the
other voxel. Phase correction rotates both interfering
components into the real channel, producing artifacts.

2.2.5 Summary of Direct Methods

Both the homodyne algorithm, and the phase cor-
rected conjugate synthesis approaches work well
if the rate of change of image phase is limited.
The problems with the homodyne approach are
the result of performing phases correction after
conjugate synthesis. The problems with the phase
corrected conjugate synthesis approach are due to
performing the conjugate synthesis after the phase
correction.

2.3 Iterative Partial k-Space Re-
construction

The methods of the previous section perform
the reconstruction in one pass. Problems arise
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Figure 2.16: Comparison of the performance of different k-space weighting functions for a 5/8ths data set,
for a phase compensated conjugate synthesis reconstruction where the conjugate synthesis is done using the
same k-space weighting technique as is used in the homodyne reconstruction. On the left is the full k-space
reconstruction. In the middle a step k-space weighting has been used On the right a ramp has been used. Each
of these results in reasonable reconstructions. At 9/16ths ghosting is produced with either weighting function
(not shown), similar to the step weighted homodyne example of Fig. 2.13.

from the interaction between phase correction and
the conjugate synthesis method, as was described
above. Another approach is to estimate the miss-
ing k-space data by iteratively applying phase cor-
rection and conjugate synthesis. In the image do-
main, the image phase is constrained to be that of
the low resolution estimate. In the frequency do-
main, the k-space data is constrained to match the
acquired data when available. Iterating produces
an estimate that approximately satisfies both sets
of constraints.

There are several variations on this idea, depend-
ing on how the constraints are applied, and how
the iteration is performed. We describe here a
simple version of the POCS (for Projection onto
Convex Sets) algorithm [3]. It is closely related to
the earlier Cuppen algorithm [2].

The algorithm operates by iteratively transform-
ing between the image domain and the spatial
frequency domain. In the spatial frequency do-
main, the phase encodes that were actually ac-
quired replace those of the current k-space esti-
mate Mi(kx, ky). This updated data set is inverse

Fourier transformed to produce the new estimated
image mi(x, y). The phase of this image is forced
to conform to the phase of the symmetrically ac-
quired image ms(x, y) by computing

mi,pc = |mi(x, y)| p(x, y) (2.5)

where
p(x, y) = ei# ms(x,y) (2.6)

The corresponding Fourier data Mi,pc(kx, ky) is
computed by Fourier transform, and the entries
corresponding to the uncollected phase are propa-
gated forward to Mi+1(kx, ky). The output image
is mi(x, y) on the last iteration. The algorithm is
summarized in Fig. 2.17. This is a complex image.
Either the magnitude or the real part of the phase
corrected image Re{mi(x, y)p∗(x, y)} can be used.

Typically the algorithm converges very rapidly, re-
quiring four to five iterations before the changes
from one iteration to the next are an order of mag-
nitude below the noise floor of the MRI data.

Examples of both POCS and homodyne recon-
structions of the data set of Fig. 2.1 are shown
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Figure 2.17: Summary of the POCS algorithm.

in Fig. 2.18, along with difference images com-
puted with respect to the full k-space reconstruc-
tion. With either method, at 5/8ths data sets,
both methods perform well. At 9/16ths, the POCS
reconstruction has fewer artifacts than the step-
windowed (shown) or ramp windowed homodyne
reconstructions.

2.4 Conclusions

All of these algorithms work well for the case where
the image phase variations are smooth. When the
image phase changes rapidly, the homodyne algo-
rithm produces ghosting. The POCS algorithm
performs somewhat better as the k-space fraction
decreases.
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HD 5/8

HD 9/16

POCS 5/8
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Figure 2.18: Comparison of partial k-space reconstructions of the axial head data of Fig. 2.1. The top two
are homodyne reconstructions at 9/16ths and 5/8ths k-space, and the lower two are POCS reconstructions for
the same k-space fractions. Difference images are computed relative to the full-k-space reconstructions. The
homodyne reconstructions at 9/16ths has clear ghosting. The POCS reconstruction at the same k-space fraction
produces fewer artifacts. Either works well at 5/8ths.



2.5. REFERENCES 23
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Figure 2.19: Comparison of partial k-space reconstructions for a gradient recalled echo phantom data set with
9/16ths k-space coverage. Here the homodyne algorithm and the POCS algorithm perform similarly. Both fail
in the vicinity of the “GE” logo, where the the phase compensation function p∗(x, y) doesn’t have the resolution
to track the rapid local changes in phase.
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